Laporta et al., 2001 - Google Patents
Amplitude and frequency stabilized solid-state lasers in the nearinfraredLaporta et al., 2001
View PDF- Document ID
- 8662837248227660316
- Author
- Laporta P
- Taccheo S
- Marano M
- Svelto O
- Bava E
- Galzerano G
- Svelto C
- Publication year
- Publication venue
- Journal of Physics D: Applied Physics
External Links
Snippet
In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd: YAG (1064 nm), Er-Yb: glass …
- 238000011105 stabilization 0 abstract description 41
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal mode control, e.g. specifically multimode
- H01S3/08031—Single-mode emission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency, amplitude
- H01S3/131—Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising more than two reflectors
- H01S3/083—Ring lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency, amplitude
- H01S3/139—Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
- H01S3/1392—Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length by using a passive reference, e.g. absorption cell
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/22—Gases
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/02—Constructional details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/30—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/146—External cavity lasers using a fiber as external cavity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S1/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of electromagnetic waves of wavelength longer than that of infra-red waves
- H01S1/06—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of electromagnetic waves of wavelength longer than that of infra-red waves gaseous, i.e. beam masers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Spiegelberg et al. | Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003) | |
Dumont et al. | Low-noise dual-frequency laser for compact Cs atomic clocks | |
Taccheo et al. | 230-mW diode-pumped single-frequency Er: Yb laser at 1.5 μm | |
Birnbaum | Frequency stabilization of gas lasers | |
Brunel et al. | High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop | |
Li et al. | Narrow-line and frequency tunable diode laser system for S–D transition of Ca+ ions | |
Laporta et al. | Amplitude and frequency stabilized solid-state lasers in the nearinfrared | |
Svelto et al. | Characterization of Yb–Er: glass lasers at 1.5 μm wavelength in terms of amplitude and frequency stability | |
Svelto et al. | Frequency stabilization of a novel 1.5-/spl mu/m Er-Yb bulk laser to a/sup 39/K sub-Doppler line at 770.1 nm | |
Laporta et al. | Amplitude and frequency stabilisation of a Tm–Ho: YAG laser for coherent lidar applications at 2.1 μm | |
Tröbs | Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA | |
Galzerano et al. | Frequency stabilization of a 1.54 μm Er–Yb laser against Doppler-free 13C2H2 lines | |
Morvan et al. | Dual-frequency laser at 1.53/spl mu/m for generating high-purity optically carried microwave signals up to 20 GHz | |
Svelto et al. | Pound-Drever frequency-stabilised Yb-Er: glass laser against C2H2 molecule at 1.534097 µm | |
Svelto et al. | Absolute frequency stabilization of two diode-pumped Er–Yb: Glass lasers to the acetylene P (15) line at 1534 nm | |
Laporta et al. | Frequency locking of tunable Er: Yb microlasers to absorption lines of C 13 2 H 2 in the 1540–1550 nm wavelength interval | |
Marano et al. | Frequency stabilized Tm-Ho: YAG laser by locking to H/sup 79/Br and CO/sub 2/transitions at around 2.09/spl mu/m | |
Alouini et al. | Bridging the gap between THz and microwave photonics through optoelectronic generation of interleaved combs Invited paper | |
Svelto et al. | Nonlinear spectroscopy of isotopic acetylene at/spl lambda/= 1.5/spl mu/m for absolute frequency stabilization of diode-pumped Er-Yb: Glass lasers | |
Galzerano et al. | Frequency-and intensity-noise measurements of a widely tunable 2-/spl mu/m Tm-Ho: KYF laser | |
Svelto et al. | High-resolution spectroscopy of the/sup 39/K transitions at 770 nm and/sup 13/C/sub 2/H/sub 2/saturated lines by a solid-state laser at 1.54/spl mu/m: toward an accurate frequency standard in the optical communication band | |
Svelto et al. | Frequency stability measurements of 1.5/spl mu/m erbium lasers locked to acetylene absorption lines | |
Liu et al. | A stable all-solid-state continuous-wave single-longitudinal-mode Nd: YVO4 laser at 1064 nm based on the molecular iodine absorption | |
Onae et al. | Toward the realization of a frequency standard at 1.5/spl mu/m based on narrow-linewidth erbium lasers and saturated acetylene lines | |
Danion et al. | High spectral purity microwave and terahertz oscillator |