[go: up one dir, main page]

Laporta et al., 2001 - Google Patents

Amplitude and frequency stabilized solid-state lasers in the nearinfrared

Laporta et al., 2001

View PDF
Document ID
8662837248227660316
Author
Laporta P
Taccheo S
Marano M
Svelto O
Bava E
Galzerano G
Svelto C
Publication year
Publication venue
Journal of Physics D: Applied Physics

External Links

Snippet

In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd: YAG (1064 nm), Er-Yb: glass …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
    • H01S3/1063Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal mode control, e.g. specifically multimode
    • H01S3/08031Single-mode emission
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency, amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising more than two reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency, amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1392Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length by using a passive reference, e.g. absorption cell
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Pulse generation, e.g. Q-switching, mode locking
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using a saturable absorber
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/22Gases
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/30Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S1/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of electromagnetic waves of wavelength longer than that of infra-red waves
    • H01S1/06Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of electromagnetic waves of wavelength longer than that of infra-red waves gaseous, i.e. beam masers

Similar Documents

Publication Publication Date Title
Spiegelberg et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)
Dumont et al. Low-noise dual-frequency laser for compact Cs atomic clocks
Taccheo et al. 230-mW diode-pumped single-frequency Er: Yb laser at 1.5 μm
Birnbaum Frequency stabilization of gas lasers
Brunel et al. High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop
Li et al. Narrow-line and frequency tunable diode laser system for S–D transition of Ca+ ions
Laporta et al. Amplitude and frequency stabilized solid-state lasers in the nearinfrared
Svelto et al. Characterization of Yb–Er: glass lasers at 1.5 μm wavelength in terms of amplitude and frequency stability
Svelto et al. Frequency stabilization of a novel 1.5-/spl mu/m Er-Yb bulk laser to a/sup 39/K sub-Doppler line at 770.1 nm
Laporta et al. Amplitude and frequency stabilisation of a Tm–Ho: YAG laser for coherent lidar applications at 2.1 μm
Tröbs Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA
Galzerano et al. Frequency stabilization of a 1.54 μm Er–Yb laser against Doppler-free 13C2H2 lines
Morvan et al. Dual-frequency laser at 1.53/spl mu/m for generating high-purity optically carried microwave signals up to 20 GHz
Svelto et al. Pound-Drever frequency-stabilised Yb-Er: glass laser against C2H2 molecule at 1.534097 µm
Svelto et al. Absolute frequency stabilization of two diode-pumped Er–Yb: Glass lasers to the acetylene P (15) line at 1534 nm
Laporta et al. Frequency locking of tunable Er: Yb microlasers to absorption lines of C 13 2 H 2 in the 1540–1550 nm wavelength interval
Marano et al. Frequency stabilized Tm-Ho: YAG laser by locking to H/sup 79/Br and CO/sub 2/transitions at around 2.09/spl mu/m
Alouini et al. Bridging the gap between THz and microwave photonics through optoelectronic generation of interleaved combs Invited paper
Svelto et al. Nonlinear spectroscopy of isotopic acetylene at/spl lambda/= 1.5/spl mu/m for absolute frequency stabilization of diode-pumped Er-Yb: Glass lasers
Galzerano et al. Frequency-and intensity-noise measurements of a widely tunable 2-/spl mu/m Tm-Ho: KYF laser
Svelto et al. High-resolution spectroscopy of the/sup 39/K transitions at 770 nm and/sup 13/C/sub 2/H/sub 2/saturated lines by a solid-state laser at 1.54/spl mu/m: toward an accurate frequency standard in the optical communication band
Svelto et al. Frequency stability measurements of 1.5/spl mu/m erbium lasers locked to acetylene absorption lines
Liu et al. A stable all-solid-state continuous-wave single-longitudinal-mode Nd: YVO4 laser at 1064 nm based on the molecular iodine absorption
Onae et al. Toward the realization of a frequency standard at 1.5/spl mu/m based on narrow-linewidth erbium lasers and saturated acetylene lines
Danion et al. High spectral purity microwave and terahertz oscillator