Chen et al., 2004 - Google Patents
Homoepitaxy of 4H-SiC on trenched (0001) Si face substrates by chemical vapor depositionChen et al., 2004
- Document ID
- 8373570759873359384
- Author
- Chen Y
- Kimoto T
- Takeuchi Y
- Malhan R
- Matsunami H
- Publication year
- Publication venue
- Japanese journal of applied physics
External Links
Snippet
The homoepitaxy of 4H-SiC on trenched substrates by chemical vapor deposition has been investigated. Two types of 4H-SiC (0001) substrates inclined 8 toward [11 bar 2 0] or [1 bar 1 00] were used. 4H-SiC growth near trenches perpendicular to the off-direction tended to be …
- 229910010271 silicon carbide 0 title abstract description 54
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1215730B9 (en) | SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER | |
Ferro | 3C-SiC heteroepitaxial growth on silicon: the quest for holy grail | |
US6995396B2 (en) | Semiconductor substrate, semiconductor device and method for fabricating the same | |
Powell et al. | Growth of step-free surfaces on device-size (0001) SiC mesas | |
TWI707975B (en) | Epitaxy substrate for semiconductor element, semiconductor element and method for manufacturing epitaxial substrate for semiconductor element | |
EP2065491B1 (en) | Gallium nitride semiconductor crystal substrate and semiconductor device | |
CN1377311A (en) | Silicon carbide epitaxial layers grown on substrates offcut towards | |
Long et al. | Structural defects in 3C–SiC grown on Si by supersonic jet epitaxy | |
US8343841B2 (en) | Method for fabricating a semiconductor device | |
US20200056302A1 (en) | Elimination of Basal Plane Dislocation and Pinning the Conversion Point Below the Epilayer Interface for SiC Power Device Applications | |
Ha et al. | Dislocation nucleation in 4H silicon carbide epitaxy | |
US9070567B2 (en) | Silicon carbide substrate and method of manufacturing silicon carbide substrate | |
Hatui et al. | Ultra-high silicon doped N-polar GaN contact layers grown by metal-organic chemical vapor deposition | |
Ikejiri et al. | Mass production-ready characteristics of AlGaN/AlN/GaN high-electron-mobility transistor structures grown on 200 mm diameter silicon substrates using metal-organic chemical vapor deposition | |
Chen et al. | Homoepitaxy of 4H-SiC on trenched (0001) Si face substrates by chemical vapor deposition | |
Severino | 3C-SiC epitaxial growth on large area silicon: Thin films | |
JP2013184860A (en) | Method for producing silicon carbide epitaxial wafer, silicon carbide epitaxial wafer, and silicon carbide semiconductor device | |
Liu et al. | Growth modes of InN (000-1) on GaN buffer layers on sapphire | |
Agrawal et al. | Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy | |
Hatayama et al. | Evaluation of Crystallinity in 4H–SiC {0001} Epilayers Thermally Etched by Chlorine and Oxygen System | |
Nakano et al. | Direct growth of GaN on off‐oriented SiC (0001) by molecular‐beam epitaxy for GaN/SiC heterojunction bipolar transistor | |
Kojima et al. | Reducing the wafer off angle for 4H-SiC homoepitaxy | |
Kojima et al. | Epitaxial growth of 4H-SiC layers on 4H-SiC vicinal off-cut substrates for GaN/SiC hybrid devices | |
Chen et al. | Homoepitaxial growth of 4H-SiC on trenched substrates by chemical vapor deposition | |
Severino et al. | high quality 3C-SiC for MOS applications |