[go: up one dir, main page]

Meunier et al., 2001 - Google Patents

Reservoir monitoring using permanent sources and vertical receiver antennae: The Céré-la-Ronde case study

Meunier et al., 2001

Document ID
834503414146215487
Author
Meunier J
Huguet F
Meynier P
Publication year
Publication venue
The Leading Edge

External Links

Snippet

Because problems with the weathered zone were anticipated, an additional experiment was carried out. Three vertical antennae were installed above the Céré-la-Ronde reservoir in the fall of 1993, before gas injection. These antennae consisted of eight receivers (10-Hz …
Continue reading at pubs.geoscienceworld.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/003Seismic data acquisition in general, e.g. survey design
    • G01V1/005Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/42Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/284Application of the shear wave component and/or several components of the seismic signal
    • G01V1/286Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/008Earthquake measurement or prediction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/082Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/30Noise handling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V11/00GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity

Similar Documents

Publication Publication Date Title
Meunier et al. Reservoir monitoring using permanent sources and vertical receiver antennae: The Céré-la-Ronde case study
Correa et al. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets—A CO2CRC Otway Project data example
Lellouch et al. Seismic velocity estimation using passive downhole distributed acoustic sensing records: Examples from the San Andreas fault observatory at depth
O'Neill et al. Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications
Staněk et al. Fracture imaging using DAS-recorded microseismic events
Miller et al. Simultaneous acquisition of distributed acoustic sensing VSP with multi-mode and single-mode fibre-optic cables and 3C-geophones at the Aquistore CO2 storage site
Pevzner et al. Repeat well logging using earthquake wave amplitudes measured by distributed acoustic sensors
Götz et al. Vertical seismic profiling using a daisy‐chained deployment of fibre‐optic cables in four wells simultaneously–Case study at the Ketzin carbon dioxide storage site
Glubokovskikh et al. Downhole distributed acoustic sensing provides insights into the structure of short‐period ocean‐generated seismic wavefield
Glubokovskikh et al. A small CO2 leakage may induce seismicity on a sub‐seismic fault in a good‐porosity clastic saline aquifer
Beilecke et al. Near‐surface fault detection using high‐resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia
Abukrat et al. Distributed acoustic sensing for shallow seismic investigations and void detection
Glubokovskikh et al. Multiwell fiber optic sensing reveals effects of CO 2 flow on triggered seismicity
Papadopoulou et al. Innovative land seismic investigations for CO2 geologic storage in Denmark
Trautz et al. Geophysical monitoring using active seismic techniques at the Citronelle Alabama CO2 storage demonstration site
Ma et al. Overview of seismic methods for urban underground space
Dasios et al. Seismic imaging of the shallow subsurface: shear‐wave case histories
Greenhalgh et al. Shallow seismic reflection investigations of coal in the Sydney Basin
Sherman et al. A numerical study of surface-wave-based tunnel detection at the Black Diamond Mines Regional Preserve, California
McCann et al. Application of cross-hole seismic measurements in site investigation surveys
Stork et al. Monitoring CO2 injection with passive and active seismic surveys: Case study from the Hellisheiði geothermal field, Iceland.
Koedel et al. Evaluating distributed acoustic sensing for crosswell seismic surveys with helical and linear fibers using conventional P-, SH-, and SV-wave sources
Yavuz et al. Assessment of the permanent seismic sources for borehole seismic monitoring applications: CO2CRC Otway Project
Jarvis et al. Near-surface VSP surveys using the seismic cone penetrometer
Correa Distributed acoustic sensing for seismic imaging and reservoir monitoring applied to CO2 geosequestration