Yang et al., 2022 - Google Patents
Developing an ultrafine Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for efficient solid oxide fuel cellsYang et al., 2022
- Document ID
- 82356400895288353
- Author
- Yang H
- Zhong T
- Chen Z
- Wang X
- Ai N
- Jiang S
- Guan C
- Fang H
- Luo Y
- Chen K
- Publication year
- Publication venue
- Ceramics International
External Links
Snippet
Abstract Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ (BSCF) is an excellent mixed ion/electron conducting cathode among solid oxide fuel cells; however, its electrochemical activity is limited by the sluggish oxygen surface exchange. The application range of the BSCF …
- 239000000446 fuel 0 title abstract description 56
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M8/141—Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Developing an ultrafine Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for efficient solid oxide fuel cells | |
Peña-Martínez et al. | Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC | |
US8124037B2 (en) | Perovskite materials for solid oxide fuel cell cathodes | |
Chen et al. | Evaluation of Ba-deficient PrBa 1− x Fe 2 O 5+ δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells | |
CN110581283B (en) | A kind of bismuth-doped solid oxide battery fuel electrode material and its preparation method and application | |
Du et al. | A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells | |
Gao et al. | Investigation of oxygen reduction reaction kinetics on Sm0. 5Sr0. 5CoO3− δ cathode supported on Ce0. 85Sm0. 075Nd0. 075O2− δ electrolyte | |
Ruan et al. | A redox-stable chromate cathode decorated with in situ grown nickel nanocatalyst for efficient carbon dioxide electrolysis | |
Hu et al. | Iron stabilized 1/3 A-site deficient La–Ti–O perovskite cathodes for efficient CO 2 electroreduction | |
Huang et al. | Hierarchically nanoporous La 1.7 Ca 0.3 CuO 4− δ and La 1.7 Ca 0.3 Ni x Cu 1− x O 4− δ (0.25≤ x≤ 0.75) as potential cathode materials for IT-SOFCs | |
Bai et al. | In-situ segregation of A-site defect (La0. 6Sr0. 4) 0.90 Co0. 2Fe0. 8O3-δ to form a high-performance solid oxide fuel cell cathode material with heterostructure | |
Xia et al. | Synthesis and properties of SmBaCo2− xNixO5+ δ perovskite oxide for IT-SOFC cathodes | |
Meng et al. | Praseodymium-deficiency Pr0. 94BaCo2O6-δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells | |
Guo et al. | Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells | |
Ai et al. | High performance nanostructured bismuth oxide–cobaltite as a durable oxygen electrode for reversible solid oxide cells | |
Jo et al. | Layered barium cobaltite structure materials containing perovskite and CdI2-based layers for reversible solid oxide cells with exceptionally high performance | |
Huang et al. | A hybrid catalyst coating for a high-performance and chromium-resistive cathode of solid oxide fuel cells | |
Rehman et al. | Designing the nano-scale architecture of the air electrode for high-performance and robust reversible solid oxide cells | |
Guo et al. | Electrochemical evaluation of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ–La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ composite cathodes for La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte SOFCs | |
Guan et al. | A Performance Study of Solid Oxide Fuel Cells With BaZr0. 1Ce0. 7Y0. 2O3–δ Electrolyte Developed by Spray‐Modified Pressing Method | |
Ferrel-Alvarez et al. | Microwave irradiation synthesis to obtain La0. 7-xPrxCa0. 3MnO3 perovskites: Electrical and electrochemical performance | |
Sun et al. | Highly durable Sr-doped LaMnO3-based cathode modified with Pr6O11 nano-catalyst for protonic ceramic fuel cells based on Y-doped BaZrO3 electrolyte | |
Zhou et al. | Self-assembled cathode induced by polarization for high-performance solid oxide fuel cell | |
dos Santos-Gómez et al. | Design and optimization of self-assembled nanocomposite electrodes for SOFCs | |
Yang et al. | Enhanced stability of BaCoO3-δ using doping process as a cathode material for IT-SOFCs |