[go: up one dir, main page]

Wasige et al., 2016 - Google Patents

High performance microstrip resonant tunneling diode oscillators as terahertz sources

Wasige et al., 2016

View PDF
Document ID
805987908105594128
Author
Wasige E
Al-Khalidi A
Alharbi K
Wang J
Publication year
Publication venue
2016 IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT)

External Links

Snippet

This paper presents monolithic microwave integrated circuits (MMIC) employing large size resonant tunneling diode (RTD) with high power at high frequencies. This is achieved by proper design of the resonating inductances which are realized by shorted microstrip …
Continue reading at eprints.gla.ac.uk (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • H03B9/14Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
    • H03B9/141Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance and comprising a voltage sensitive element, e.g. varactor
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
    • H01S5/125Distributed Bragg reflector lasers (DBR-lasers)
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0074Locking of an oscillator by injecting an input signal directly into the oscillator
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L47/00Bulk negative resistance effect devices, e.g. Gunn-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/12Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising distributed inductance and capacitance
    • H03B7/14Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising distributed inductance and capacitance active element being semiconductor device
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves

Similar Documents

Publication Publication Date Title
Al-Khalidi et al. Resonant tunneling diode terahertz sources with up to 1 mW output power in the J-band
Suzuki et al. High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration
Wang et al. High performance resonant tunneling diode oscillators for THz applications
CN102714485B (en) Oscillation circuit having negative differential resistance element and oscillator using the oscillation circuit
JP6282041B2 (en) Oscillator
Lee et al. A 1.52 THz RTD Triple-Push Oscillator With a $\mu {\hbox {W}} $-Level Output Power
Stake et al. Status and prospects of high-power heterostructure barrier varactor frequency multipliers
Wang et al. High performance resonant tunneling diode oscillators as terahertz sources
JP6415036B2 (en) Oscillator
EP3799299A1 (en) Device emitting or detecting terahertz waves, and manufacturing method for device
Cornescu et al. High-efficiency bias stabilization for resonant tunneling diode oscillators
Lee et al. 692 GHz high-efficiency compact-size InP-based fundamental RTD oscillator
Wasige et al. Resonant tunnelling diode terahertz sources for broadband wireless communications
Diebold et al. A terahertz monolithic integrated resonant tunneling diode oscillator and mixer circuit
Wasige et al. High performance microstrip resonant tunneling diode oscillators as terahertz sources
Al-Khalidi et al. Compact J-band oscillators with lm RF output power and over 110 GHz modulation bandwidth
Wang et al. Design, fabrication and characterisation of RTD terahertz oscillators
Wang et al. W-band InP-based resonant tunnelling diode oscillator with milliwatt output power
Al-Khalidi et al. THz electronics for data centre wireless links—The TERAPOD project
Lee et al. A sub-mW D-band 2 nd harmonic oscillator using InP-based quantum-effect tunneling devices
Nobrega et al. A semi-analytical approach for performance evaluation of RTD-based oscillators
Al-Khalidi et al. Very High-Power High-Frequency Resonant Tunnelling Diode Oscillators
Alharbi High performance terahertz resonant tunnelling diode sources and broadband antenna for air-side radiation
Wang et al. G-Band MMIC resonant tunneling diode oscillators
Wang et al. MMIC resonant tunneling diode oscillators for THz applications