Shapiro et al., 2010 - Google Patents
The cognitive agents specification language and verification environmentShapiro et al., 2010
- Document ID
- 7978416802403622760
- Author
- Shapiro S
- Lesperance Y
- Levesque H
- Publication year
- Publication venue
- Specification and Verification of Multi-agent Systems
External Links
Snippet
Abstract The Cognitive Agents Specification Language (CASL) is a framework for specifying multiagent systems. It has a mix of declarative and procedural components to facilitate the specification and verification of complex multiagent systems. In this chapter, we describe …
- 230000001149 cognitive 0 title abstract description 18
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3604—Software analysis for verifying properties of programs
- G06F11/3608—Software analysis for verifying properties of programs using formal methods, e.g. model checking, abstract interpretation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3604—Software analysis for verifying properties of programs
- G06F11/3612—Software analysis for verifying properties of programs by runtime analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/436—Semantic checking
- G06F8/437—Type checking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/4421—Execution paradigms
- G06F9/4428—Object-oriented
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/445—Programme loading or initiating
- G06F9/44589—Programme code verification, e.g. Java bytecode verification, proof-carrying code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/362—Software debugging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3668—Software testing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/35—Model driven
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/31—Programming languages or programming paradigms
- G06F8/313—Logic programming, e.g. PROLOG programming language
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
- G06F8/74—Reverse engineering; Extracting design information from source code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/36—Software reuse
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/34—Graphical or visual programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/20—Software design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/10—Requirements analysis; Specification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shapiro et al. | The cognitive agents specification language and verification environment for multiagent systems | |
US5768480A (en) | Integrating rules into object-oriented programming systems | |
De Giacomo et al. | ConGolog, a concurrent programming language based on the situation calculus | |
Scherl et al. | Knowledge, action, and the frame problem | |
Cousot et al. | Systematic design of program transformation frameworks by abstract interpretation | |
Hindriks et al. | Agent programming with declarative goals | |
Rintanen | Regression for classical and nondeterministic planning | |
Claßen et al. | A Logic for Non-Terminating Golog Programs. | |
Van Der Straeten et al. | A formal approach to model refactoring and model refinement | |
Kowalski et al. | Abductive logic programming agents with destructive databases | |
De Giacomo et al. | Verifying ConGolog programs on bounded situation calculus theories | |
Zee et al. | Runtime checking for program verification | |
Alechina et al. | Norm specification and verification in multi-agent systems | |
Claßen et al. | Exploring the boundaries of decidable verification of non-terminating Golog programs | |
Reddy | Objects and classes in Algol-like languages | |
Montali et al. | Verification from declarative specifications using logic programming | |
Pilitowski et al. | Code generation and execution framework for UML 2.0 classes and state machines | |
Rakamarić et al. | An inference-rule-based decision procedure for verification of heap-manipulating programs with mutable data and cyclic data structures | |
Duan et al. | A model for abstract process specification, verification and composition | |
Fockel et al. | Formal, Model-and Scenario-based Requirement Patterns. | |
Chaudhuri et al. | Hybrid linear logic, revisited | |
Chen et al. | Reasoning about nondeterministic and concurrent actions: A process algebra approach | |
Shapiro et al. | The cognitive agents specification language and verification environment | |
Restivo et al. | Reasoning about complex actions with incomplete knowledge: a modal approach | |
Montali et al. | Abductive logic programming as an effective technology for the static verification of declarative business processes |