[go: up one dir, main page]

Li et al., 2022 - Google Patents

A spatial broadband magnetic flux leakage method for trans-scale defect detection

Li et al., 2022

Document ID
78411736615644799
Author
Li E
Chen X
Wu J
Zhu J
Kang Y
Publication year
Publication venue
Journal of Nondestructive Evaluation

External Links

Snippet

As an efficient non-destructive testing (NDT) method, the magnetic flux leakage (MFL) method has been widely used to evaluate various ferromagnetic materials over the years. Recently, by using magnetic heads, MFL has been utilized for identifying micro-cracks with …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details
    • G01N27/9013Details specially adapted for scanning
    • G01N27/902Details specially adapted for scanning by moving the sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents and more than one sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic means
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Similar Documents

Publication Publication Date Title
Liu et al. A review of wire rope detection methods, sensors and signal processing techniques
Ona et al. Design and optimisation of mutual inductance based pulsed eddy current probe
Huang et al. Design of an eddy-current array probe for crack sizing in steam generator tubes
Deng et al. A permeability-measuring magnetic flux leakage method for inner surface crack in thick-walled steel pipe
Dehui et al. A novel non-destructive testing method by measuring the change rate of magnetic flux leakage
Li et al. A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks
Wu et al. Magnetic flux leakage course of inner defects and its detectable depth
Wang et al. A novel magnetic flux leakage testing method based on AC and DC composite magnetization
Postolache et al. Detection and characterization of defects using GMR probes and artificial neural networks
Bouchala et al. Novel coupled electric field method for defect characterization in eddy current non-destructive testing systems
Li et al. A spatial broadband magnetic flux leakage method for trans-scale defect detection
Ye et al. Frequency domain analysis of magnetic field images obtained using TMR array sensors for subsurface defect detection and quantification
Soni et al. Lock-in amplifier based eddy current instrument for detection of sub-surface defect in stainless steel plates
Aguila-Muñoz et al. A magnetic perturbation GMR-based probe for the nondestructive evaluation of surface cracks in ferromagnetic steels
Chen et al. Eddy current testing
Zhang et al. Study on the shielding effect of claddings with transmitter–receiver sensor in pulsed eddy current testing
Cai et al. Quantitative evaluation of electrical conductivity inside stress corrosion crack with electromagnetic NDE methods
Mizukami et al. Experimental and numerical analysis of eddy current sensor signal induced by out-of-plane fiber waviness in carbon fiber composites
Luo et al. Method for removing secondary peaks in remote field eddy current testing of pipes
Tytko Locating defects in conductive materials using the eddy current model of the filamentary coil
Zhang et al. Mechanism study for directivity of TR probe when applying Eddy current testing to ferro-magnetic structural materials
Wang et al. Displacement measurement for ferromagnetic materials based on the double-layer parallel-cable-based probe
Luo et al. Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes
Ru et al. High-resolution defect visualization with zero-magnetic zone sensing structure
Jiang et al. Automatic detection of microcracks on the surface of special steel wire based on remanence effect