[go: up one dir, main page]

Han et al., 2020 - Google Patents

Inhomogeneity correction in magnetic resonance images using deep image priors

Han et al., 2020

Document ID
767892941673510448
Author
Han S
Prince J
Carass A
Publication year
Publication venue
International Workshop on Machine Learning in Medical Imaging

External Links

Snippet

Intensity inhomogeneity in magnetic resonance (MR) images can decrease the performance of image processing, such as segmentation and registration. In this work, we propose an unsupervised learning approach to correct the inhomogeneity of an MR image based on …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/007Dynamic range modification
    • G06T5/008Local, e.g. shadow enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/002Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/003Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Similar Documents

Publication Publication Date Title
Huang et al. Bayesian nonparametric dictionary learning for compressed sensing MRI
Pierre et al. Multiscale reconstruction for MR fingerprinting
Manjón et al. Diffusion weighted image denoising using overcomplete local PCA
Yang et al. Brain MR image denoising for Rician noise using pre-smooth non-local means filter
Choudhry et al. Performance analysis of fuzzy C-means clustering methods for MRI image segmentation
Moreno López et al. Evaluation of MRI denoising methods using unsupervised learning
Cordier et al. Extended modality propagation: image synthesis of pathological cases
Pal et al. Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering
Godaliyadda et al. A supervised learning approach for dynamic sampling
Benou et al. De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks
US20240298990A1 (en) Generating synthetic electron density images from magnetic resonance images
Mohsin et al. Iterative shrinkage algorithm for patch-smoothness regularized medical image recovery
Ramzi et al. Denoising score-matching for uncertainty quantification in inverse problems
Han et al. Inhomogeneity correction in magnetic resonance images using deep image priors
Liu et al. Diffusion tensor imaging denoising based on Riemann nonlocal similarity
Baselice et al. A Bayesian approach for relaxation times estimation in MRI
Yang et al. Split Bregman method based level set formulations for segmentation and correction with application to MR images and color images
Chuang et al. Deep learning network for integrated coil inhomogeneity correction and brain extraction of mixed MRI data
Ma et al. MRI reconstruction with enhanced self-similarity using graph convolutional network
Fleishman et al. Joint intensity fusion image synthesis applied to multiple sclerosis lesion segmentation
Narasimha et al. An effective tumor detection approach using denoised MRI based on fuzzy bayesian segmentation approach
Rousseau et al. Human brain labeling using image similarities
Shahvaran et al. Simultaneous vector-valued image segmentation and intensity nonuniformity correction using variational level set combined with Markov random field modeling
Rajith et al. Edge preserved de-noising method for medical x-ray images using wavelet packet transformation
Singh et al. Magnetic resonance image denoising using patchwise convolutional neural networks