Chartier et al., 1993 - Google Patents
High slope efficiency and low threshold in a diode pumped epitaxially grown Yb: YAG waveguide laserChartier et al., 1993
- Document ID
- 7379169290290185162
- Author
- Chartier I
- Wyon C
- Pelenc D
- Ferrand B
- Shepherd D
- Hanna D
- Publication year
- Publication venue
- MRS Online Proceedings Library (OPL)
External Links
Snippet
We report the 1.03 μm laser operation of a diode-pumped Yb doped YAG planar waveguide at room temperature. The fabrication of multilayer planar waveguides by Liquid Phase Epitaxy and their characterization are also described. Laser results (40 mW threshold, 80 …
- 238000004943 liquid phase epitaxy 0 abstract description 8
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/1655—Solid materials characterised by a crystal matrix silicate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pelenc et al. | High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb: YAG waveguide laser | |
Romanyuk et al. | Yb-doped KY (WO4) 2 planar waveguide laser | |
Pollnau et al. | Double tungstate lasers: From bulk toward on-chip integrated waveguide devices | |
Rameix et al. | An efficient, diode-pumped, 2 μm Tm: YAG waveguide laser | |
CA2783176C (en) | Mid-ir microchip laser: zns:cr2+ laser with saturable absorber material | |
JPH07183607A (en) | Laser cavity for passively switching with saturable absorberand laser with it | |
Sugimoto et al. | A ytterbium‐and neodymium‐co‐doped yttrium aluminum garnet–buried channel waveguide laser pumped at 0.81 μm | |
Hanna et al. | Low threshold quasi-three-level 946nm laser operation of an epitaxially grown Nd: YAG waveguide | |
Shimokozono et al. | Room‐temperature operation of an Yb‐doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength | |
Griebner et al. | Laser operation of epitaxially grown Yb: KLu (WO/sub 4/)/sub 2/--KLu (WO/sub 4/)/sub 2/composites with monoclinic Crystalline structure | |
Daran et al. | Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy | |
Chartier et al. | High slope efficiency and low threshold in a diode pumped epitaxially grown Yb: YAG waveguide laser | |
Bhutta et al. | Low phonon energy, Nd: LaF/sub 3/channel waveguide lasers fabricated by molecular beam epitaxy | |
Pollnau et al. | Optical waveguides in laser crystals | |
Jelinek et al. | Planar waveguide lasers and structures created by laser ablation—an overview | |
Shepherd et al. | A low threshold, room temperature 1.64 µm Yb: Er: Y 3 Al 5 O 12 waveguide laser | |
McFarlane et al. | Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy | |
Domenech et al. | Continuous-wave laser operation at 1.3 μm in Nd 3+-doped Zn: LiNbO 3 channel waveguides | |
US6937630B2 (en) | Laser oscillation method and laser device | |
Rivier et al. | PROOF COPY [63247] 002601OPL | |
Bore et al. | Growth by liquid phase epitaxy and low threshold laser oscillation at 2.012 pm of a Tm: YAG waveguide laser. | |
HIDEUR et al. | Watt-level Tm: LiYF4 channel waveguide laser produced by diamond saw dicing | |
Large et al. | Low Threshold Quasi-Three-Level 946 nm Laser Operation of an Epitaxially Grown Nd: YAG Waveguide | |
Borel et al. | Growth by liquid phase epitaxy and low-threshold laser oscillation at 2.012 um of a Tm: YAG waveguide laser | |
Geskus et al. | Poor man's channel waveguide laser: KY (WO4) 2: Yb |