Sachidananda et al., 2022 - Google Patents
Calm: Contrastive aligned audio-language multirate and multimodal representationsSachidananda et al., 2022
View PDF- Document ID
- 7058867161959048885
- Author
- Sachidananda V
- Tseng S
- Marchi E
- Kajarekar S
- Georgiou P
- Publication year
- Publication venue
- arXiv preprint arXiv:2202.03587
External Links
Snippet
Deriving multimodal representations of audio and lexical inputs is a central problem in Natural Language Understanding (NLU). In this paper, we present Contrastive Aligned Audio-Language Multirate and Multimodal Representations (CALM), an approach for …
- 230000003595 spectral 0 abstract description 13
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L2015/088—Word spotting
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
- G10L15/1822—Parsing for meaning understanding
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/06—Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
- G10L15/065—Adaptation
- G10L15/07—Adaptation to the speaker
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification
- G10L17/26—Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/28—Constructional details of speech recognition systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Atmaja et al. | Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion | |
Yeh et al. | An interaction-aware attention network for speech emotion recognition in spoken dialogs | |
Sebastian et al. | Fusion Techniques for Utterance-Level Emotion Recognition Combining Speech and Transcripts. | |
Kumar et al. | Towards the Explainability of Multimodal Speech Emotion Recognition. | |
Rao et al. | Speech to semantics: Improve asr and nlu jointly via all-neural interfaces | |
Sachidananda et al. | Calm: Contrastive aligned audio-language multirate and multimodal representations | |
Latif et al. | Can large language models aid in annotating speech emotional data? uncovering new frontiers | |
Chen et al. | Learning robust heterogeneous signal features from parallel neural network for audio sentiment analysis | |
CN113761841A (en) | Method for converting text data into acoustic features | |
Goncalves et al. | Improving speech emotion recognition using self-supervised learning with domain-specific audiovisual tasks | |
Amiriparian et al. | On the impact of word error rate on acoustic-linguistic speech emotion recognition: An update for the deep learning era | |
Kaushik et al. | Automatic audio sentiment extraction using keyword spotting. | |
Kim et al. | Towards practical and efficient image-to-speech captioning with vision-language pre-training and multi-modal tokens | |
Serafini et al. | An experimental review of speaker diarization methods with application to two-speaker conversational telephone speech recordings | |
de Oliveira et al. | Leveraging semantic information for efficient self-supervised emotion recognition with audio-textual distilled models | |
Bai et al. | Integrating knowledge into end-to-end speech recognition from external text-only data | |
Tulchinskii et al. | Topological data analysis for speech processing | |
Vlasenko et al. | Fusion of acoustic and linguistic information using supervised autoencoder for improved emotion recognition | |
Dutta et al. | LLM supervised Pre-training for Multimodal Emotion Recognition in Conversations | |
Wazir et al. | Deep learning-based detection of inappropriate speech content for film censorship | |
Jabnoun et al. | Speaker identification enhancement using emotional features | |
Nonaka et al. | Fully Auto-Regressive Multi-modal Large Language Model for Contextual Emotion Recognition | |
Li et al. | Prompting whisper for qa-driven zero-shot end-to-end spoken language understanding | |
Cho et al. | Zero-Shot Intent Classification Using a Semantic Similarity Aware Contrastive Loss and Large Language Model | |
Ma | Research on the construction of English translation model for speech recognition based on multiple information sources and lexical assistance |