[go: up one dir, main page]

Wolbrecht et al., 2015 - Google Patents

Hybrid baseline localization for autonomous underwater vehicles

Wolbrecht et al., 2015

Document ID
6885362185685732658
Author
Wolbrecht E
Gill B
Borth R
Canning J
Anderson M
Edwards D
Publication year
Publication venue
Journal of Intelligent & Robotic Systems

External Links

Snippet

This paper presents a hybrid baseline (HBL) navigation method for autonomous underwater vehicles (AUVs). In this approach, a floating acoustic transponder is used to augment moving short baseline (MSBL) navigation, in which two transponders are mounted on a …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
    • G01S1/76Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/66Sonar tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3817Positioning of seismic devices
    • G01V1/3835Positioning of seismic devices measuring position, e.g. by GPS or acoustically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/94Radar or analogous systems specially adapted for specific applications for terrain-avoidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00

Similar Documents

Publication Publication Date Title
Eustice et al. Experimental results in synchronous-clock one-way-travel-time acoustic navigation for autonomous underwater vehicles
US20190204430A1 (en) Submerged Vehicle Localization System and Method
Kinsey et al. A survey of underwater vehicle navigation: Recent advances and new challenges
Melo et al. Survey on advances on terrain based navigation for autonomous underwater vehicles
Larsen High performance Doppler-inertial navigation-experimental results
McEwen et al. Performance of an AUV navigation system at Arctic latitudes
EP2689263B1 (en) Determining a position of a submersible vehicle within a body of water
Eustice et al. Recent advances in synchronous-clock one-way-travel-time acoustic navigation
Wolbrecht et al. Hybrid baseline localization for autonomous underwater vehicles
Jakuba et al. Long‐baseline acoustic navigation for under‐ice autonomous underwater vehicle operations
CN104316045B (en) A SINS/LBL-based AUV underwater interactive auxiliary positioning system and positioning method
Casey et al. Underwater vehicle positioning based on time of arrival measurements from a single beacon
CN111076728A (en) Integrated navigation method of deep-dive manned submersible based on DR/USBL
Jakuba et al. Feasibility of low-power one-way travel-time inverted ultra-short baseline navigation
Wang et al. AUV navigation based on inertial navigation and acoustic positioning systems
Hartsfield Single transponder range only navigation geometry (STRONG) applied to REMUS autonomous under water vehicles
Norgren et al. Intelligent buoys for aiding AUV navigation under the ice
Liu et al. Filter-bank approach within tightly-coupled navigation system for integrity enhancement in maritime applications
Lager et al. Underwater terrain navigation using standard sea charts and magnetic field maps
Liu Robust multi-sensor data fusion for practical unmanned surface vehicles (USVs) navigation
Beiter et al. Precision hybrid navigation system for varied marine applications
Pelletier Human-autonomy teaming for improved diver navigation
Fallon et al. Simultaneous localization and mapping in marine environments
Quraishi et al. Easily deployable underwater acoustic navigation system for multi-vehicle environmental sampling applications
Inzartsev et al. Integrated positioning system of autonomous underwater robot and its application in high latitudes of arctic zone