Vienne et al., 2007 - Google Patents
Microfiber resonator in polymer matrixVienne et al., 2007
View PDF- Document ID
- 6780354178692091793
- Author
- Vienne G
- Li Y
- Tong L
- Publication year
- Publication venue
- IEICE transactions on electronics
External Links
Snippet
We propose a simple technique to form miniature optical circuits using microfibers embedded into a low refractive index matrix. As an example we demonstrate a silica microfiber knot resonator embedded in a fluoroacrylate polymer. Fabrication issues and …
- 239000003658 microfiber 0 title abstract description 66
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02376—Longitudinal variation along fibre axis direction, e.g. tapered holes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02319—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
- G02B6/02338—Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2821—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02066—Gratings having a surface relief structure, e.g. repetitive variation in diameter of core or cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/264—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/023—Microstructured optical fibre having different index layers arranged around the core for guiding light by reflection, i.e. 1D crystal, e.g. omniguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/105—Light guides of the optical waveguide type having optical polarisation effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/107—Subwavelength-diameter waveguides, e.g. nanowires
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/024—Optical fibre with cladding with or without a coating with polarisation maintaining properties
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Optical microfibers and nanofibers | |
JP5943328B2 (en) | Apparatus and method using hollow core fiber taper | |
Sumetsky | Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators | |
Tong et al. | Subwavelength and nanometer diameter optical fibers | |
Ismaeel et al. | Optical microfiber passive components | |
Zhang et al. | Polarization-dependent coupling in twin-core photonic crystal fibers | |
Xuan et al. | Highly birefringent optical microfibers | |
Ran et al. | Temperature-compensated refractive-index sensing using a single Bragg grating in an abrupt fiber taper | |
Luo et al. | Recent progress in microfiber-optic sensors | |
Jin et al. | Sensing with hollow-core photonic bandgap fibers | |
Ahmed et al. | Miniaturized tapered photonic crystal fiber Mach–Zehnder interferometer for enhanced refractive index sensing | |
Chen et al. | All-fiber modal interferometer based on a joint-taper-joint fiber structure for refractive index sensing with high sensitivity | |
Vienne et al. | Microfiber resonator in polymer matrix | |
Ye et al. | Analysis of coupling losses for all-fiber integration of subwavelength core hybrid optical fibers | |
Sumetsky et al. | Fabrication of miniature optical fiber and microfiber coils | |
Ahmed et al. | Tapered photonic crystal fiber based Mach-Zehnder interferometer for enhanced refractive index sensing | |
Ren et al. | Optical microfiber knot resonator (MKR) and its slow-light performance | |
Tan et al. | Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications | |
Zhang et al. | High-sensitivity refractive index sensor based on 3× 3 microfiber coupler structure | |
Jiang et al. | Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber | |
Xu | Micro-/nano-optical fiber devices | |
Savastru et al. | Analysis of optical microfiber thermal processes | |
Wu et al. | Optical Micro/Nanofiber as Valuable Technological Platform for Lab on Fiber | |
Soleymani | Physics and Applications of Exceptional Surfaces | |
Chen et al. | Photonic crystal fiber refractive index sensor based on surface plasmon resonance |