[go: up one dir, main page]

Bousquet et al., 2019 - Google Patents

Single-mode high frequency LiNbO 3 film bulk acoustic resonator

Bousquet et al., 2019

Document ID
6610489006362649785
Author
Bousquet M
Bertucchi M
Perreau P
Castellan G
Maeder-Pachurka C
Mercier D
Delprato J
Borzi A
Sejil S
Enyedi G
Dechamp J
Zussy M
Kuisseu P
Mazen F
Billard C
Reinhardt A
Publication year
Publication venue
2019 IEEE International Ultrasonics Symposium (IUS)

External Links

Snippet

In this paper, Y+ 163°-cut LiNbO 3 (LNO) Film Bulk Acoustic Resonators (FBAR) with patterned bottom electrodes (AlSi or W) and a sacrificial layer cavity have been fabricated using a layer transfer process (4-inch). Unlike previous work based on films oriented …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02582Characteristics of substrate, e.g. cutting angles of diamond substrates
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02062Details relating to the vibration mode
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator of the energy-trap type
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezo-electric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezo-electric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0095Balance-unbalance or balance-balance networks using bulk acoustic wave devices

Similar Documents

Publication Publication Date Title
Bousquet et al. Single-mode high frequency LiNbO 3 film bulk acoustic resonator
Bousquet et al. Lithium niobate film bulk acoustic wave resonator for sub-6 GHz filters
Gorisse et al. High frequency LiNbO 3 bulk wave resonator
Butaud et al. Innovative smart cut™ piezo on insulator (POI) substrates for 5G acoustic filters
JP7051690B2 (en) Induced surface acoustic wave device that results in spurious mode removal
Zheng et al. Near 5-GHz longitudinal leaky surface acoustic wave devices on LiNbO 3/SiC substrates
EP2628246A1 (en) Wide-band acoustically coupled thin-film baw filter
Bousquet et al. 4.2 GHz LiNbO 3 film bulk acoustic resonator
Link et al. An A1 mode resonator at 12 GHz using 160nm lithium niobate suspended thin film
Su et al. 5.9 GHz longitudinal leaky SAW filter with FBW of 9.2% and IL of 1.8 dB using LN/quartz structure
Yandrapalli et al. Fabrication and analysis of thin film lithum niobate resonators for 5GHz frequency and large K t 2 applications
Yandrapalli et al. Toward band n78 shear bulk acoustic resonators using crystalline Y-cut lithium niobate films with spurious suppression
Zhou et al. Ultrawide-band SAW devices using SH0 mode wave with increased velocity for 5G front-ends
Bousquet et al. LiNbO 3 film bulk acoustic resonator for n79 band
Bousquet et al. Potentialities of LiTaO3 for Bulk Acoustic Wave Filters
CN117614410A (en) Elastic wave resonator and filter device
US20250158594A1 (en) Bulk acoustic resonator device with enhanced power handling capabilities by double layer piezoelectric material
Ke et al. Heterogeneous Integration of 42$^{\circ} $ YX LiNbO $ _ {\text {3}} $/SiO $ _ {\text {2}} $/Quartz for Wideband and Spurious-Free SAW Resonators
Pijolat et al. Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer
Reinhardt et al. Lithium niobate film bulk longitudinal wave resonator
Zha et al. Surface and bulk acoustic wave resonators based on aluminum nitride for bandpass filters
Yantchev et al. A spurious free SH-SAW resonator employing a novel multilayer stack
Lin et al. High-Q SAW resonators based on high-crystallinity AlScN-AlN-sapphire substrate
Qian et al. Twist piezoelectric coupling properties to suppress spurious modes for lithium niobate thin-film acoustic devices
Matsumoto et al. High frequency solidly mounted resonator using LN single crystal thin plate