Taghipour et al., 2021 - Google Patents
A bottom-up and top-down human visual attention approach for hyperspectral anomaly detectionTaghipour et al., 2021
- Document ID
- 649199717366923309
- Author
- Taghipour A
- Ghassemian H
- Publication year
- Publication venue
- Journal of Visual Communication and Image Representation
External Links
Snippet
Hyperspectral anomaly detection (HAD) is a branch of target detection which tries to locate pixels that are spectrally or spatially different from their background. In this paper, a visual attention approach is developed to leverage HAD. Traditional HAD methods often try to …
- 238000001514 detection method 0 title abstract description 103
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/2018—Identifying/ignoring parts by sensing at different wavelengths
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Hyperspectral anomaly detection via convolutional neural network and low rank with density-based clustering | |
Ma et al. | Centroid and covariance alignment-based domain adaptation for unsupervised classification of remote sensing images | |
Matteoli et al. | A tutorial overview of anomaly detection in hyperspectral images | |
Hu et al. | Hyperspectral anomaly change detection based on autoencoder | |
Lu et al. | From subpixel to superpixel: A novel fusion framework for hyperspectral image classification | |
Matasci et al. | Semisupervised transfer component analysis for domain adaptation in remote sensing image classification | |
Gong et al. | Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering | |
Narihira et al. | Learning lightness from human judgement on relative reflectance | |
Liu et al. | Multiscale Dense Cross‐Attention Mechanism with Covariance Pooling for Hyperspectral Image Scene Classification | |
Taghipour et al. | Hyperspectral anomaly detection using attribute profiles | |
Li et al. | Unsupervised hyperspectral image change detection via deep learning self-generated credible labels | |
Wang et al. | Shadow detection and removal for illumination consistency on the road | |
Trivedi et al. | Automatic segmentation of plant leaves disease using min-max hue histogram and k-mean clustering | |
Falco et al. | A toolbox for unsupervised change detection analysis | |
Huang et al. | Subpixel-pixel-superpixel guided fusion for hyperspectral anomaly detection | |
Kainat et al. | Blended Features Classification of Leaf‐Based Cucumber Disease Using Image Processing Techniques | |
Liu et al. | Dual-frequency autoencoder for anomaly detection in transformed hyperspectral imagery | |
Meerdink et al. | Multitarget multiple-instance learning for hyperspectral target detection | |
Taghipour et al. | A bottom-up and top-down human visual attention approach for hyperspectral anomaly detection | |
Chhapariya et al. | Cnn-based salient object detection on hyperspectral images using extended morphology | |
Gong et al. | An adaptive multiscale Gaussian co-occurrence filtering decomposition method for multispectral and SAR image fusion | |
Simonson et al. | A statistical approach to combining multisource information in one‐class classifiers | |
Zhang et al. | S $^{2} $ DCN: Spectral–Spatial Difference Convolution Network for Hyperspectral Image Classification | |
Rehman et al. | Effective land use classification through hybrid transformer using remote sensing imagery | |
Ryer et al. | Quest hierarchy for hyperspectral face recognition |