Hossain et al., 2010 - Google Patents
Error performance analysis to increase capacity of a cellular system using SDMAHossain et al., 2010
View PDF- Document ID
- 6387330255148158817
- Author
- Hossain M
- Hossain J
- Publication year
- Publication venue
- arXiv preprint arXiv:1002.3328
External Links
Snippet
One of the biggest drawbacks of the wireless environment is the limited bandwidth. However, the users sharing this limited bandwidth have been increasing considerably. Space Division Multiple Access (SDMA) is a new technology by which the capacity of …
- 230000001413 cellular 0 title abstract description 7
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/086—Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0602—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
- H04B7/0604—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
- H04B7/0606—Random or pseudo-random switching scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0491—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/12—Fixed resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Coverage and rate analysis of millimeter wave NOMA networks with beam misalignment | |
Liberti et al. | Analytical results for capacity improvements in CDMA | |
Petrus et al. | Capacity enhancement using adaptive arrays in an AMPS system | |
KR101011751B1 (en) | Relief Transmission Pattern for Multiple Simultaneous Transmitters to Support Signal Separation at the Receiver | |
Bhobe et al. | An overview of smart antenna technology for wireless communication | |
Nguyen et al. | Coverage and cell-edge sum-rate analysis of mmWave massive MIMO systems with ORP schemes and MMSE receivers | |
Buzzi et al. | Massive MIMO 5G cellular networks: mm-wave vs.\mu-wave frequencies | |
Jafari et al. | Analysis of interference mitigation in mmWave communications | |
Nawaz et al. | Auxiliary beam pair enabled initial access in mmwave systems: Analysis and design insights | |
Shahsavari et al. | Sectoring in multi-cell massive MIMO systems | |
WO2007093384A1 (en) | Method for optimizing the spacing between receiving antennas of an array usable for counteracting both interference and fading in cellular systems | |
Misra et al. | Smart antenna for wireless cellular communication-a technological analysis on architecture, working mechanism, drawbacks and future scope | |
KR200331911Y1 (en) | Base station smart-antenna for mud-enabled cellular networks | |
Tsoulos et al. | Performance enhancement of DS-CDMA microcellular networks with adaptive antennas | |
Hossain et al. | Error performance analysis to increase capacity of a cellular system using SDMA | |
Zetterberg | A comparison of two systems for downlink communication with base station antenna arrays | |
Qian et al. | Performance of the blind interference alignment using ESPAR antennas | |
Lötter et al. | An overview of space division multiple access techniques in cellular systems | |
Tsoulos et al. | Performance enhancement of DS-CDMA PCS cellular networks with smart antennas | |
Gautam et al. | Beamforming investigation for wireless communication at 60 GHz | |
Margarita et al. | Application of MUSIC for spatial reference beamforming for SDMA in a smart antenna for GSM and DECT | |
Ng et al. | Impact of inter-cell interference on capacity in the joint multiple access (CDMA and SDMA) system | |
Brown et al. | Simultaneous 5 GHz co-channel multiple-input multiple-output links at microcellular boundaries: interference or cooperation? | |
Erez et al. | Eliminating out-of-cell interference in cellular massive MIMO with a single additional transceiver | |
Ali et al. | Performance analysis of inter-cell interference reduction using AOA-based beamforming in Mm wave massive MIMO systems |