Baker et al., 2008 - Google Patents
Development of edge pumped Yb: YAG planar waveguide lasersBaker et al., 2008
View PDF- Document ID
- 6345569835086381526
- Author
- Baker H
- Monjardin J
- Thomson I
- Trela N
- Valera J
- Hall D
- Publication year
- Publication venue
- Solid State Lasers XVII: Technology and Devices
External Links
Snippet
A waveguide with 150 μm core height of 2% Yb: YAG between sapphire claddings is core- pumped at 480W by diode bars coupled into the 13 mm long edge-facet. The pump unit has custom correction of collimation errors and lens aberrations. Using a 6mm width and 7° …
- 230000003071 parasitic 0 abstract description 20
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094049—Guiding of the pump light
- H01S3/094057—Guiding of the pump light by tapered duct or homogenized light pipe, e.g. for concentrating pump light
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/0804—Transverse or lateral mode control, e.g. specifically multimode
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/117—Q-switching using acousto-optical devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8565272B2 (en) | Method and apparatus for generation and amplification of light in a semi-guiding high aspect ratio core fiber | |
US6785304B2 (en) | Waveguide device with mode control and pump light confinement and method of using same | |
CN102388334B (en) | Novel photonic devices based on conical refraction | |
IL239720A (en) | Suppression of amplified spontaneous emission (ase) within laser planar waveguide devices | |
Chen et al. | Efficient high-power diode-end-pumped TEM/sub 00/Nd: YVO 4 laser | |
KR20160006129A (en) | Optical amplifier and process | |
Parali et al. | Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability | |
Baker et al. | A planar waveguide Nd: YAG laser with a hybrid waveguide–unstable resonator | |
KR101857751B1 (en) | Slab solid laser amplifier | |
US20020181534A1 (en) | Diode-pumped slab solid-state laser | |
Baker et al. | Development of edge pumped Yb: YAG planar waveguide lasers | |
Dascalu et al. | Scaling and passively Q-switch operation of a Nd: YAG laser pumped laterally through a YAG prism | |
EP2451031B1 (en) | Method and apparatus for generation and amplification of light in a semi-guiding high aspect ratio core fiber | |
Hettrick et al. | An experimental comparison of linear and parabolic tapered waveguide lasers and a demonstration of broad-stripe diode pumping | |
Thomson et al. | 400W Yb: YAG planar waveguide laser using novel unstable resonators | |
Lee et al. | A Nd: YAG planar waveguide laser operating at 121W output with face-pumping by diode bars, and its use as a power amplifier | |
JP2008258531A (en) | Laser amplification apparatus and laser equipment | |
Yao et al. | Highly efficient CW Tm, Ho: GdVO4 laser pumped by a diode | |
Zhao et al. | A 15.1 W continuous wave TEM 00 mode laser using a YVO 4/Nd: YVO 4 composite crystal | |
Dascalu | Edge-pump high power microchip Yb: YAG Laser | |
Mlynczak et al. | Investigation of the Impact of the Pumping Beam Waist Size and Position on the Efficiency of YVO4/Nd: YVO4/YVO4 Laser Generation | |
Wang et al. | Output beam quality of edge pumped planar waveguide lasers with confocal unstable resonators | |
Mackenzie | Power-scaling Nd: YAG's quasi-four-level transition | |
Thomson et al. | Double sided diode edge-pumped Yb: YAG planar waveguide laser with 230W output power | |
Kudryashov et al. | Room temperature power scalability of the diode-pumped Er: YAG eye-safe laser |