[go: up one dir, main page]

Parisi et al., 2021 - Google Patents

Making the most of scarce input data in deep learning-based source code classification for heterogeneous device mapping

Parisi et al., 2021

View PDF
Document ID
5999106372003418538
Author
Parisi E
Barchi F
Bartolini A
Acquaviva A
Publication year
Publication venue
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

External Links

Snippet

Despite its relatively recent history, deep learning (DL)-based source code analysis is already a cornerstone in machine learning for compiler optimization. When applied to the classification of pieces of code to identify the best computational unit in a heterogeneous …
Continue reading at cris.unibo.it (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformations of program code
    • G06F8/41Compilation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks

Similar Documents

Publication Publication Date Title
Wadden et al. ANMLzoo: a benchmark suite for exploring bottlenecks in automata processing engines and architectures
Li et al. V-fuzz: Vulnerability prediction-assisted evolutionary fuzzing for binary programs
Mou et al. Building program vector representations for deep learning
Ma et al. Hdtest: Differential fuzz testing of brain-inspired hyperdimensional computing
Gan et al. Ptolemy: Architecture support for robust deep learning
CN114218580B (en) A smart contract vulnerability detection method based on multi-task learning
Cavuoti et al. Genetic algorithm modeling with GPU parallel computing technology
Dutta et al. Pattern-based autotuning of openmp loops using graph neural networks
Mao et al. Explainable software vulnerability detection based on attention-based bidirectional recurrent neural networks
Parisi et al. Making the most of scarce input data in deep learning-based source code classification for heterogeneous device mapping
Ni et al. Online performance and power prediction for edge TPU via comprehensive characterization
Chen et al. Multi-view learning for parallelism discovery of sequential programs
Zhang et al. Machine Learning-Based Fuzz Testing Techniques: A Survey
Sharif et al. Function identification in android binaries with deep learning
Sun et al. Automated performance modeling based on runtime feature detection and machine learning
Novais et al. An open computing language‐based parallel Brute Force algorithm for formal concept analysis on heterogeneous architectures
Zong et al. GraphPyRec: A novel graph-based approach for fine-grained Python code recommendation
Alvares et al. Application of computational intelligence for source code classification
Martinez-Gil Improving source code similarity detection through graphcodebert and integration of additional features
Zhu et al. Detecting Source Code Vulnerabilities Using Fine-Tuned Pre-Trained LLMs
Zhang et al. An improved biomedical event trigger identification framework via modeling document with hierarchical attention
Ning et al. Collaborative analysis on code structure and semantics
Alonso-Moro et al. Deep Learning-Based Code Auto-Completion for Distributed Applications
Lang et al. Software Defect Prediction via Multi-Channel Convolutional Neural Network
Du et al. Automated Software Vulnerability Detection via Curriculum Learning