Shoji et al., 2019 - Google Patents
Recent progress for all solid state battery using sulfide and oxide solid electrolytesShoji et al., 2019
View PDF- Document ID
- 5960802258236063973
- Author
- Shoji M
- Cheng E
- Kimura T
- Kanamura K
- Publication year
- Publication venue
- Journal of Physics D: Applied Physics
External Links
Snippet
All solid state batteries (ASSB) have been researched by many groups in order to realize safe and high energy density rechargeable batteries. There are mainly two types of inorganic electrolytes used for ASSB: sulfides and oxides. We will review the recent …
- 239000007784 solid electrolyte 0 title abstract description 92
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shoji et al. | Recent progress for all solid state battery using sulfide and oxide solid electrolytes | |
Hou et al. | Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries | |
Ding et al. | Interfaces: Key issue to be solved for all solid-state lithium battery technologies | |
Hassoun et al. | Advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries | |
Ma et al. | A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces | |
Zhang et al. | Preparation and electrochemical properties of Li1+ xAlxGe2-x (PO4) 3 synthesized by a sol-gel method | |
Goodenough et al. | Solid electrolytes in rechargeable electrochemical cells | |
Kato et al. | High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films | |
Yao et al. | All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science | |
Sakuda et al. | Modification of interface between LiCoO2 electrode and Li2S–P2S5 solid electrolyte using Li2O–SiO2 glassy layers | |
CN103858266B (en) | Battery and its manufacturing method | |
Wu et al. | Development of LiNi0. 5Mn1. 5O4/Li4Ti5O12 system with long cycle life | |
Jiang et al. | Reducing the interfacial resistance in all‐solid‐state lithium batteries based on oxide ceramic electrolytes | |
Hueso et al. | High temperature sodium batteries: status, challenges and future trends | |
Meabe et al. | Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view | |
Sakuda et al. | LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries | |
Park et al. | Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries | |
Robinson et al. | High temperature electrode‐electrolyte interface formation between LiMn1. 5Ni0. 5O4 and Li1. 4Al0. 4Ge1. 6 (PO 4) 3 | |
Croce et al. | A high-rate, long-life, lithium nanocomposite polymer electrolyte battery | |
Seo et al. | Cold sintering, enabling a route to co-sinter an all-solid-state lithium-ion battery | |
Wu et al. | Forming solid electrolyte interphase in situ in an ionic conducting Li1. 5Al0. 5Ge1. 5 (PO4) 3-polypropylene (PP) based separator for Li-ion batteries | |
Liu et al. | Construction and interfacial modification of a β-PbSnF4 electrolyte with high intrinsic ionic conductivity for a room-temperature fluoride-ion battery | |
He et al. | Solid-state electrolytes: Advances and perspectives | |
US20230261254A1 (en) | Solid-state electrolyte material comprising a chalcogenide-based ionic-conductive structure, particularly a sulfide-based ionic-conductive structure | |
Palakkathodi Kammampata et al. | Cruising in ceramics—discovering new structures for all-solid-state batteries—fundamentals, materials, and performances |