Scott et al., 2014 - Google Patents
Intermediate temperature proton‐conducting membrane electrolytes for fuel cellsScott et al., 2014
- Document ID
- 5913091452561958732
- Author
- Scott K
- Xu C
- Wu X
- Publication year
- Publication venue
- Wiley Interdisciplinary Reviews: Energy and Environment
External Links
Snippet
This review provides an overview of intermediate temperature proton‐conducting membrane electrolyte materials for fuel cells. Such fuel cells operate in the approximate temperature range of 150–300° C and can capitalize on a number of technological reasons for operating …
- 239000012528 membrane 0 title abstract description 109
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
- Y02E60/522—Direct Alcohol Fuel Cells [DAFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped of ion-exchange resins Use of macromolecular compounds as anion B01J41/14 or cation B01J39/20 exchangers
- C08J5/22—Films, membranes, or diaphragms
- C08J5/2206—Films, membranes, or diaphragms based on organic and/or inorganic macromolecular compounds
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Scott et al. | Intermediate temperature proton‐conducting membrane electrolytes for fuel cells | |
Vinothkannan et al. | Potential bifunctional filler (CeO2–ACNTs) for nafion matrix toward extended electrochemical power density and durability in proton-exchange membrane fuel cells operating at reduced relative humidity | |
Kalathil et al. | Polymer fuel cell based on polybenzimidazole membrane: a review | |
Kraytsberg et al. | Review of advanced materials for proton exchange membrane fuel cells | |
JP5287969B2 (en) | Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell | |
Bae et al. | Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells | |
Fu et al. | Acid–base blend membranes based on 2-amino-benzimidazole and sulfonated poly (ether ether ketone) for direct methanol fuel cells | |
KR101209531B1 (en) | Solid Alkaline Fuel Cells With Ion Exchange Membrane | |
Li et al. | Recent advances of metal–organic frameworks‐based proton exchange membranes in fuel cell applications | |
EP1648047B1 (en) | Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuell cell comprising the same | |
Pu | Polymers for PEM fuel cells | |
JP5713335B2 (en) | POLYSULFONE POLYMER, POLYMER ELECTROLYTE MEMBRANE CONTAINING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME, FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE POLYMER | |
Li et al. | Self-cross-linked sulfonated poly (ether ether ketone) with pendant sulfoalkoxy groups for proton exchange membrane fuel cells | |
Jung et al. | Advances in ion conducting membranes and binders for high temperature polymer electrolyte membrane fuel cells | |
Pourcelly | Membranes for low and medium temperature fuel cells. State-of-the-art and new trends | |
Hooshyari et al. | Advanced nanocomposite membranes based on sulfonated polyethersulfone: influence of nanoparticles on PEMFC performance | |
Liu et al. | Poly (arylene ether ketone) with an ultrahigh-selectivity hydrophilic phase proton transport channel by grafting sulfonated benzotriazole groups onto pendant chains | |
Muthumeenal et al. | Recent research trends in polymer nanocomposite proton exchange membranes for electrochemical energy conversion and storage devices | |
Kamaroddin et al. | Hydrogen production by membrane water splitting technologies | |
JP5189394B2 (en) | Polymer electrolyte membrane | |
KR101223559B1 (en) | Method of preparing polymer membrane for fuel cell | |
JP5286651B2 (en) | Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell | |
JP2009021234A (en) | Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell | |
JP2007031718A5 (en) | ||
Zhang et al. | Perovskite-Carbon Joint Substrate for Practical Application in Proton Exchange Membrane Fuel Cells under Low-Humidity/High-Temperature Conditions |