[go: up one dir, main page]

Sebastião et al., 2017 - Google Patents

Fading histograms in detecting distribution and concept changes

Sebastião et al., 2017

View HTML
Document ID
5819171217472979196
Author
Sebastião R
Gama J
Mendonça T
Publication year
Publication venue
International Journal of Data Science and Analytics

External Links

Snippet

The remarkable number of real applications under dynamic scenarios is driving a novel ability to generate and gather information. Nowadays, a massive amount of information is generated at a high-speed rate, known as data streams. Moreover, data are collected under …
Continue reading at link.springer.com (HTML) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6228Selecting the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/3071Clustering or classification including class or cluster creation or modification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults

Similar Documents

Publication Publication Date Title
Gemaque et al. An overview of unsupervised drift detection methods
Souiden et al. A survey of outlier detection in high dimensional data streams
US10600005B2 (en) System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model
Gama et al. On evaluating stream learning algorithms
Sebastião et al. Fading histograms in detecting distribution and concept changes
Ren et al. Knowledge-maximized ensemble algorithm for different types of concept drift
Bifet Classifier concept drift detection and the illusion of progress
US9471882B2 (en) Information identification method, program product, and system using relative frequency
US20140258187A1 (en) Generating database cluster health alerts using machine learning
Ahmadi et al. Modeling recurring concepts in data streams: a graph-based framework
Chen et al. Selective prototype-based learning on concept-drifting data streams
Bernardo et al. An extensive study of C-SMOTE, a continuous synthetic minority oversampling technique for evolving data streams
Saucedo-Espinosa et al. Detection of defective embedded bearings by sound analysis: a machine learning approach
Agrahari et al. Disposition-based concept drift detection and adaptation in data stream
MS et al. A survey on detecting healthcare concept drift in AI/ML models from a finance perspective
Geissler et al. A low-cost strategic monitoring approach for scalable and interpretable error detection in deep neural networks
Ciancarelli et al. A gan approach for anomaly detection in spacecraft telemetries
Asghari et al. Aggregate density-based concept drift identification for dynamic sensor data models
Mahdi et al. Roadmap of concept drift adaptation in data stream mining, years later
Ando et al. Minimizing response time in time series classification
Ilicheva et al. Logical approaches to anomaly detection in industrial dynamic processes
Fatlawi et al. On robustness of adaptive random forest classifier on biomedical data stream
Hafzan et al. Review on predictive modelling techniques for identifying students at risk in university environment
US20220391724A1 (en) Unsupervised Anomaly Detection With Self-Trained Classification
Wang et al. A robustness evaluation of concept drift detectors against unreliable data streams