Persson et al., 1999 - Google Patents
Self-assembled single electron tunneling devices with organic tunnel barriersPersson et al., 1999
- Document ID
- 578421847003423408
- Author
- Persson S
- Olofsson L
- Gunnarsson L
- Olsson E
- Publication year
- Publication venue
- Nanostructured Materials
External Links
Snippet
Self assembling techniques were used to fabricate single-electron tunneling (SET) devices with organic tunnel junctions. The process involves angle evaporation of two gold electrodes. They have separations of less than 10 nm and were covered with a …
- 230000005641 tunneling 0 title abstract description 10
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y10/00—Nano-technology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y30/00—Nano-technology for materials or surface science, e.g. nano-composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y40/00—Manufacture or treatment of nano-structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/882—Assembling of separate components, e.g. by attaching
- Y10S977/884—Assembled via biorecognition entity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0045—Carbon containing materials, e.g. carbon nanotubes, fullerenes
- H01L51/0048—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/701—Integrated with dissimilar structures on a common substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y25/00—Nano-magnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/122—Single quantum well structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y20/00—Nano-optics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y5/00—Nano-biotechnology or nano-medicine, e.g. protein engineering or drug delivery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANO-TECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
- B82Y15/00—Nano-technology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Magnus Persson et al. | A self-assembled single-electron tunneling transistor | |
US7223444B2 (en) | Particle deposition apparatus and methods for forming nanostructures | |
US8828792B2 (en) | Nanostructure assemblies, methods and devices thereof | |
Bezryadin et al. | Electrostatic trapping of single conducting nanoparticles between nanoelectrodes | |
US8039368B2 (en) | Nanogaps: methods and devices containing same | |
Liddle et al. | Lithographically directed self-assembly of nanostructures | |
Karmakar et al. | Nano-electronics and spintronics with nanoparticles | |
Ben Ali et al. | Atomic force microscope tip nanoprinting of gold nanoclusters | |
Hutchinson et al. | Templated Gold Nanowire Self‐Assembly on Carbon Substrates | |
US7067341B2 (en) | Single electron transistor manufacturing method by electro-migration of metallic nanoclusters | |
Palazon et al. | Writing on nanocrystals: patterning colloidal inorganic nanocrystal films through irradiation-induced chemical transformations of surface ligands | |
Kim et al. | Tunnel diodes fabricated from CdSe nanocrystal monolayers | |
Janes et al. | Electronic conduction through 2D arrays of nanometer diameter metal clusters | |
Lee et al. | Electronic properties of metallic nanoclusters on semiconductor surfaces: Implications for nanoelectronic device applications | |
Ouyang | Two-terminal resistive switching memory devices with a polymer film embedded with nanoparticles | |
Persson et al. | Self-assembled single electron tunneling devices with organic tunnel barriers | |
Sung et al. | Assembly of nanoparticles: towards multiscale three-dimensional architecturing | |
Persson et al. | A Self‐Assembled Single‐Electron Tunneling Device | |
Huang et al. | Electrical properties of self-organized nanostructures of alkanethiol-encapsulated gold particles | |
CN100521240C (en) | hHorizontally grown carbon nanotubes method and field effect transistor using horizontally grown carbon nanotubes | |
Kanda et al. | Simple and controlled fabrication of nanoscale gaps using double-angle evaporation | |
Olofsson et al. | Nanofabrication of self-assembled molecular-scale electronics | |
Natelson | Fabrication of metal nanowires | |
Erokhin et al. | Fatty acid-based monoelectron device | |
Huang et al. | Control of interdot space and dot size in a two-dimensional gold nanodot array |