Roovers, 2000 - Google Patents
Wide-band A/D conversion for base stationsRoovers, 2000
- Document ID
- 577770325230641315
- Author
- Roovers R
- Publication year
- Publication venue
- Circuits and Systems for Wireless Communications
External Links
Snippet
Conclusions A/D converters for multi-channel receiver base-stations is THE challenge in ADC design. Based on performance metrics and observations of state-of-the-art A/D converters, it can be concluded that the combined dynamic range and bandwidth …
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0626—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/26—Circuits for superheterodyne receivers
- H04B1/28—Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers without distortion of the input signal
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0614—Continuously compensating for, or preventing, undesired influence of physical parameters of harmonic distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/0003—Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
- H04B1/0028—Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
- H04B1/0032—Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage with analogue quadrature frequency conversion to and from the baseband
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9722746B2 (en) | Analog-to-digital converter with bandpass noise transfer function | |
Patel et al. | Bandpass sampling for software radio receivers, and the effect of oversampling on aperture jitter | |
US20020118128A1 (en) | Parallel time interleaved delta sigma modulator | |
US9692458B2 (en) | Software programmable cellular radio architecture for telematics and infotainment | |
US9537514B2 (en) | High oversampling ratio dynamic element matching scheme for high dynamic range digital to RF data conversion for cellular communications | |
US9648562B2 (en) | Transceiver front-end circuit for a cellular radio that employs components for reducing power consumption | |
Gomez | Theoretical comparison of direct-sampling versus heterodyne RF receivers | |
Jamin et al. | Broadband direct RF digitization receivers | |
US7973689B2 (en) | Bandpass multi-bit sigma-delta analog to digital conversion | |
Ben-Romdhane et al. | Nonuniformly controlled analog-to-digital converter for SDR multistandard radio receiver | |
Sadhu et al. | Building an on-chip spectrum sensor for cognitive radios | |
US20150188737A1 (en) | Agile radio architecture | |
US9722638B2 (en) | Software programmable, multi-segment capture bandwidth, delta-sigma modulators for cellular communications | |
Roovers | Wide-band A/D conversion for base stations | |
WIDE-BAND et al. | Mixed-Signal Circuits & Systems group Philips Research Laboratories Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands | |
KR101896262B1 (en) | Broadband Receiver and a Receiving Method Thereafter | |
Brannon et al. | Redefining the Role of ADCs in Wireless it | |
US9780942B2 (en) | Optimized data converter design using mixed semiconductor technology for cellular communications | |
Shin et al. | An eight channel analog-FFT based 450MS/s hybrid filter bank ADC with improved SNDR for multi-band signals in 40nm CMOS | |
Kraemer | Data conversion considerations for software radios | |
JP2005026998A (en) | Semiconductor integrated circuit incorporating bit conversion circuit or shift circuit and a/d conversion circuit, and semiconductor integrated circuit for communication | |
Brannon et al. | Wideband Receiver for 5G, Instrumentation, and ADEF | |
Brannon et al. | Data Conversion in Software Defined Radios | |
Adams et al. | Towards an integrated circuit design of a compresssed sampling wireless receiver | |
Jussila et al. | Minimization of power dissipation of analog channel-select filter and Nyquist-rate A/D converter in UTRA/FDD |