Yoder et al., 2005 - Google Patents
Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scatteringYoder et al., 2005
View HTML- Document ID
- 5653359613606871315
- Author
- Yoder G
- Diwakar P
- Hahn D
- Publication year
- Publication venue
- Applied optics
External Links
Snippet
Although laser-induced incandescence (LII) has been successfully used for soot volume fraction and particle size measurements, uncertainties remain regarding issues of soot vaporization leading to mass loss and morphological changes occurring in soot due to …
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon   [C] 0 title abstract description 140
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/718—Laser microanalysis, i.e. with formation of sample plasma
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/72—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/74—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/26—Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yoder et al. | Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering | |
Snelling et al. | A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity | |
Witze et al. | Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame | |
Ni et al. | Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence | |
Hofmann et al. | Laser-induced incandescence for soot diagnostics at high pressures | |
Vander Wal et al. | Laser-induced incandescence: excitation intensity | |
De Iuliis et al. | Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames | |
Axelsson et al. | Laser-induced incandescence for soot particle size measurements in premixed flat flames | |
Rai et al. | Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys | |
Vander Wal | Laser-induced incandescence: detection issues | |
Michelsen et al. | Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms | |
CA2272758C (en) | Method and apparatus for applying laser induced incandescence for the determination of particulate measurements | |
Vander Wal et al. | Cavity ringdown and laser-induced incandescence measurements of soot | |
Olofsson et al. | Soot sublimation studies in a premixed flat flame using laser-induced incandescence (LII) and elastic light scattering (ELS) | |
Vander Wal et al. | Laser-induced incandescence applied to metal nanostructures | |
Sun et al. | Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping | |
Patnaik et al. | Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure | |
Zhang et al. | Measurement of soot volume fraction and primary particle diameter in oxygen enriched ethylene diffusion flames using the laser-induced incandescence technique | |
Cenker et al. | Assessment of soot particle-size imaging with LII at Diesel engine conditions | |
Michael et al. | Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames | |
Williamson et al. | Comparison of existing laser-induced breakdown thermometry techniques along with a time-resolved breakdown approach | |
Oh et al. | Non-intrusive laser-induced breakdown spectroscopy in flammable mixtures via limiting inverse-bremsstrahlung photon absorption | |
Török et al. | Influence of rapid laser heating on differently matured soot with double-pulse laser-induced incandescence | |
Wu et al. | A Comprehensive Review of Optical Systems for Soot Volume Fraction Measurements in Co-Flow Laminar Flames: Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM) | |
Asgill et al. | Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes |