Zhou et al., 2011 - Google Patents
Mechanically-induced π-shifted long-period fiber gratingsZhou et al., 2011
View HTML- Document ID
- 5498859706267473875
- Author
- Zhou X
- Shi S
- Zhang Z
- Zou J
- Liu Y
- Publication year
- Publication venue
- Optics Express
External Links
Snippet
A band-pass filter based on mechanically-induced multi-π-shifted long-period fiber gratings is proposed. The pass band width of the filter depends on the number N of the sub-gratings divided by π-shifts in the long-period fiber grating. The depth of the two lateral rejection …
- 239000000835 fiber 0 title abstract description 54
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/0208—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
- G02B6/02085—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29317—Light guides of the optical fibre type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1221—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29346—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
- G02B6/2935—Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02066—Gratings having a surface relief structure, e.g. repetitive variation in diameter of core or cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F2001/3528—Non-linear optics for producing a supercontinuum
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/30—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
- G02F2201/307—Reflective grating, i.e. Bragg grating
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Savin et al. | Tunable mechanically induced long-period fiber gratings | |
Hill et al. | Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion | |
Gu | Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings | |
Han et al. | Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities | |
Lim et al. | Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings | |
Mohammed et al. | All-fiber multimode interference bandpass filter | |
Rastogi et al. | Long-period gratings in planar optical waveguides | |
Noordegraaf et al. | Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers | |
Zhou et al. | Mechanically-induced π-shifted long-period fiber gratings | |
Kopp et al. | Single-and double-helix chiral fiber sensors | |
Steinvurzel et al. | Long period grating resonances in photonic bandgap fiber | |
Zhang et al. | Tunable add/drop channel coupler based on an<? A3B2 show [pmg: line-break justify=" yes"/]?> acousto-optic tunable filter and a tapered fiber | |
Liu et al. | Bandwidth optimization of cascaded long-period gratings for broadband mode conversion over 1.0-2.2 µm waveband | |
Zhu et al. | Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method | |
Li et al. | Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber | |
Pudo et al. | Long-period gratings in chalcogenide fibers | |
Zhang et al. | Cladding-mode-assisted recouplings in concatenated long-period and fiber Bragg gratings | |
Gao et al. | Temperature compensated microfiber Bragg gratings | |
Gao et al. | Broadband edge filter based on a helical long-period fiber grating and its application to a power-interrogated torsion sensor | |
Sáez-Rodriguez et al. | Coupling between counterpropagating cladding modes in fiber Bragg gratings | |
Xiao et al. | Spectral tuning of the diameter-dependent-chirped Bragg gratings written in microfibers | |
Ivanov et al. | Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion | |
Cusano et al. | Photonic band-gap engineering in UV fiber gratings by the arc discharge technique | |
Jin et al. | Bragg grating resonances in all-solid bandgap fibers | |
Kim et al. | Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers |