Ogata et al., 2014 - Google Patents
Studies on the oxidative cyclization of 3-hydroxyalkyl-1, 2, 4-trialkoxynaphthalenes and synthetic application for the biologically active natural compound …Ogata et al., 2014
- Document ID
- 5493757185333355127
- Author
- Ogata T
- Doe M
- Matsubara A
- Torii E
- Nishiura C
- Nishiuchi A
- Kobayashi Y
- Kimachi T
- Publication year
- Publication venue
- Tetrahedron
External Links
Snippet
The oxidative intramolecular cyclization of 3-hydroxyalkyl-1, 2, 4-trimethoxynaphthalenes was investigated. A series of 1, 2-naphthoquinone fused cyclic ethers were synthesized directly from 3-hydroxyalkyl-1, 2, 4-trimethoxynaphthalenes by exposure to diammonium …
- GAQRLJKQPBBUSK-UHFFFAOYSA-N 3,3-dimethyl-2,4-dihydrobenzo[h]chromene-5,6-dione   O=C1C(=O)C2=CC=CC=C2C2=C1CC(C)(C)CO2 0 title abstract description 37
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes unsubstituted on the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/10—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
- C07D317/14—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2101/00—Systems containing only non-condensed rings
- C07C2101/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2101/16—The ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic System
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C-Si linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2101/00—Systems containing only non-condensed rings
- C07C2101/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2101/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2102/00—Systems containing two condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guindon et al. | Regiocontrolled opening of cyclic ethers using dimethylboron bromide | |
EP2791123B1 (en) | Process for preparation of 3-((2s,5s)-4-methylene-5-(3-oxopropyl)tetrahydrofuran-2-yl) propanol derivatives and intermediates useful thereof | |
Mosca et al. | Synthesis of monoprotected 1, 4-diketones by photoinduced alkylation of enones with 2-substituted-1, 3-dioxolanes | |
Zhang et al. | Photochemically catalyzed Diels–Alder reaction of arylimines with N-vinylpyrrolidinone and N-vinylcarbazole by 2, 4, 6-triphenylpyrylium salt: synthesis of 4-heterocycle-substituted tetrahydroquinoline derivatives | |
Rye et al. | Asymmetric synthesis and anti-protozoal activity of the 8, 4′-oxyneolignans virolin, surinamensin and analogues | |
Sabitha et al. | Synthesis of gingerol and diarylheptanoids | |
Sá et al. | Synthesis of allylic thiocyanates and novel 1, 3-thiazin-4-ones from 2-(bromomethyl) alkenoates and S-nucleophiles in aqueous medium | |
Yato et al. | Reduction of carboxylic esters to ethers with triethyl silane in the combined use of titanium tetrachloride and trimethylsilyl trifluoromethanesulfonate | |
Azzena et al. | Regioselective reductive demethoxylation of 3, 4, 5-trimethoxystilbenes | |
Chandrasekhar et al. | An expedient total synthesis of cis-(+)-Sertraline from D-phenylglycine | |
Montaña et al. | Asymmetry induction on the [4C (4π)+ 3C (2π)] cycloaddition reaction of C2-functionalized furans: influence of the chiral auxiliary nature | |
Ogata et al. | Studies on the oxidative cyclization of 3-hydroxyalkyl-1, 2, 4-trialkoxynaphthalenes and synthetic application for the biologically active natural compound rhinacanthone | |
CN103073559B (en) | Chiral aromatic spiroketal compound and its preparation method and application | |
Selvam et al. | A new synthesis of the phytotoxic 10-membered lactone herbarumin I | |
Deredas et al. | Highly syn-diastereoselective Michael addition of enolizable ketones to 3-(diethoxyphosphoryl) coumarin | |
Khan et al. | A highly efficient and catalytic synthetic protocol for oxathioacetalization of carbonyl compounds | |
Li et al. | PhI (OAc) 2-mediated additions of 2, 4-dinitrophenylsulfenamide with methylenecyclopropanes (MCPs) and a methylenecyclobutane (MCB) | |
Dumitrescu et al. | Synthesis and cytotoxic activity of fluorinated analogues of Goniothalamus lactones. Impact of fluorine on oxidative processes | |
JP6686012B2 (en) | Method for preparing halo-substituted trifluoroacetophenone | |
Wang et al. | Synthesis of cyclic allyl vinyl ethers using Pt (II)-catalyzed isomerization of oxo-alkynes | |
EP2522648B1 (en) | Process for producing difluorocyclopropane compound | |
Ogata et al. | Total synthesis of (±)-lantalucratins A and B by CAN-mediated oxidative cyclization | |
Yadav et al. | HBF4· OEt2 as a versatile reagent for the Hosomi–Sakurai allylation and Prins cyclization: one-pot synthesis of symmetrical 4-fluorotetrahydropyrans | |
Chen et al. | Total synthesis of γ-trifluoromethylated analogs of goniothalamin and their derivatives | |
Gündüz et al. | Reactions of quino‐ketenes with C‐nucleophiles: syntheses of (2‐hydroxyphenyl) methanols and 2‐hydroxyphenyl ketones |