Srinivas et al., 2009 - Google Patents
An efficient reliable multicast protocol for 802.11-based wireless LANsSrinivas et al., 2009
- Document ID
- 5421264681120272041
- Author
- Srinivas V
- Ruan L
- Publication year
- Publication venue
- 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops
External Links
Snippet
Many applications are inherently multicast in nature. Such applications can benefit tremendously from reliable multicast support at the MAC layer because addressing reliability at the MAC level is much less expensive than handling errors at the upper layers. However …
- 230000005540 biological transmission 0 abstract description 46
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. van Duuren system; ARQ protocols
- H04L1/1867—Arrangements specific to the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations contains provisionally no documents
- H04L12/18—Arrangements for providing special services to substations contains provisionally no documents for broadcast or conference, e.g. multicast
- H04L12/1886—Arrangements for providing special services to substations contains provisionally no documents for broadcast or conference, e.g. multicast with traffic restrictions for efficiency improvement, e.g. involving subnets or subdomains
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0833—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
- H04W74/0841—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0808—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
- H04W74/0816—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/04—Scheduled or contention-free access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/16—Multipoint routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8411608B2 (en) | Efficient and reliable multicast over a Wi-Fi network | |
Katti et al. | XORs in the air: practical wireless network coding | |
Rozner et al. | ER: Efficient retransmission scheme for wireless LANs | |
EP2274934B1 (en) | Robust coding in multi-hop networks | |
US20160073288A1 (en) | Reducing contention in a peer-to-peer data link network | |
Zhang et al. | MAC-layer proactive mixing for network coding in multi-hop wireless networks | |
Argyriou | Wireless network coding with improved opportunistic listening | |
Srinivas et al. | An efficient reliable multicast protocol for 802.11-based wireless LANs | |
US7912032B2 (en) | System and method for communicating within a wireless communication network | |
Lyakhov et al. | Analytical study of QoS-oriented multicast in wireless networks | |
CN102158331B (en) | MAC (Media Access Control) layer reliable multicasting method of wireless ad hoc network | |
Oliveira et al. | Towards reliable broadcast in ad hoc networks | |
Deng et al. | An efficient MAC multicast protocol for reliable wireless communications with network coding | |
Biswas et al. | On-demand reliable medium access in sensor networks | |
Wang et al. | Reliable multicast mechanism in WLAN with extended implicit MAC acknowledgment | |
Slama et al. | A hybrid MAC with prioritization for wireless sensor networks | |
Xie et al. | An improvement to the reliability of IEEE 802.11 broadcast scheme for multicasting in mobile ad networks | |
Chen et al. | BEAM: broadcast engagement ACK mechanism to support reliable broadcast transmission in IEEE 802.11 wireless ad hoc networks | |
Hamidian | Supporting Internet access and quality of service in distributed wireless ad hoc networks | |
Qin et al. | Distributed cooperative MAC for wireless networks based on network coding | |
Wang et al. | A reliable and efficient MAC layer multicast protocol in wireless LANs | |
Kim et al. | Reliable wireless multicasting with minimum overheads in OFDM-based WLANs | |
Srinivas | An efficient and fair reliable multicast protocol for 802.11-based wireless LANs | |
Chen et al. | Group-based relay for reliable multicast service in error prone IEEE 802.11 e WLANs | |
Mahani et al. | Enhancing channel utilization in mesh networks |