Jiang et al., 2018 - Google Patents
The preliminary design of the next generation Palomar spectrograph for 200-inch Hale telescopeJiang et al., 2018
View PDF- Document ID
- 5143252723401535755
- Author
- Jiang H
- Hu Z
- Xu M
- Dai S
- Zhang H
- Wang L
- Chen Y
- Publication year
- Publication venue
- Ground-based and Airborne Instrumentation for Astronomy VII
External Links
Snippet
The Next Generation Palomar Spectrograph (NGPS) is designed for Cassergrain focus of the Hale 200-inch telescope to replace the old Palomar Double Spectrograph (DBSP). NGPS have higher throughput, efficiency and realities spectrograph. NGPS is designed as …
- 230000003595 spectral 0 abstract description 16
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0605—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
- G02B17/061—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infra-red or ultra-violet radiation
- G02B13/146—Optical objectives specially designed for the purposes specified below for use with infra-red or ultra-violet radiation with corrections for use in multiple wavelength bands, such as infra-red and visible light, e.g. FLIR systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0804—Catadioptric systems using two curved mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical face, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/0025—Other optical systems; Other optical apparatus for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/12—Generating the spectrum; Monochromators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0884—Catadioptric systems having a pupil corrector
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/02—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
- G02B23/06—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0038—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schwab et al. | Design of NEID, an extreme precision Doppler spectrograph for WIYN | |
Warren et al. | Dyson spectrometers for high-performance infrared applications | |
Mouroulis et al. | Optical design of a CubeSat-compatible imaging spectrometer | |
Oliva et al. | ELT-HIRES the high resolution instrument for the ELT: optical design and instrument architecture | |
Pazder et al. | The Gemini High-Resolution Optical SpecTrograph (GHOST) bench spectrograph optical design | |
Jiang et al. | The preliminary design of the next generation Palomar spectrograph for 200-inch Hale telescope | |
Pascal et al. | Optical design of the SuMiRe/PFS Spectrograph | |
Caillier et al. | Maunakea spectroscopic explorer low moderate resolution spectrograph conceptual design | |
Sreejith et al. | Near ultraviolet spectrograph for balloon platform | |
Oliva et al. | Updated optical design and trade-off study for MOONS, the Multi-Object Optical and Near Infrared spectrometer for the VLT | |
Pazder et al. | Final integration of the Gemini High-Resolution Optical SpecTrograph (GHOST) spectrograph | |
Tang et al. | Camera optics in the ultraviolet region of the Next Generation Palomar Spectrograph | |
Janssen et al. | Trade-offs in the visible spectrograph of the ELT instrument MOSAIC | |
Ji et al. | Optical design of imaging and spectrograph for 4m telescope in China | |
Arrazola et al. | The optical design of a far infrared spectrometer for SPICA: grating modules evaluation | |
Mu et al. | Dual-band co-aperture infrared optical system design for irradiance measurement | |
He et al. | Optical design of diffractive telescope system based on off-axis three mirror | |
Pan et al. | Design of optical system for short-wave infrared silicon immersion grating imaging spectrometer | |
Li et al. | Afocal three-mirror anastigmat with zigzag optical axis for widened field of view and enlarged aperture | |
Chen et al. | Gemini IRMOS: conceptual optical design of a multi-object adaptive optics-fed infrared integral-field spectrograph for the Gemini telescope | |
Liu et al. | Research on analysis and suppression method of scene inhomogeneity of spaceborne imaging spectrometer | |
Zhang et al. | Design of infrared diffractive telescope imaging optical systems | |
Van et al. | Optical design for multi-functional IRST system using high-definition detector | |
Wang et al. | Optical system design of spaceborne infrared dual-band hyperspectral imager | |
Feng et al. | Hyperspectrometer based on curved prism fabrication for space application |