Quan et al., 2013 - Google Patents
Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraintsQuan et al., 2013
- Document ID
- 5056535828003145844
- Author
- Quan N
- Yin J
- Ng S
- Lee L
- Publication year
- Publication venue
- Iie Transactions
External Links
Snippet
Metamodels are commonly used as fast surrogates for the objective function to facilitate the optimization of simulation models. Kriging (or the Gaussian process model) is a very popular metamodel form for deterministic and, recently, stochastic simulations. This article proposes …
- 238000005457 optimization 0 title abstract description 95
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
- G06Q10/0639—Performance analysis
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/06—Investment, e.g. financial instruments, portfolio management or fund management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Quan et al. | Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints | |
Narne et al. | AI-Driven Decision Support Systems in Management: Enhancing Strategic Planning and Execution | |
Miró-Quesada et al. | A Bayesian approach for multiple response surface optimization in the presence of noise variables | |
Picheny et al. | A benchmark of kriging-based infill criteria for noisy optimization | |
Chang et al. | Identification of the technology life cycle of telematics: A patent-based analytical perspective | |
Cerqueira et al. | Arbitrage of forecasting experts | |
Ajdari et al. | An adaptive exploration-exploitation algorithm for constructing metamodels in random simulation using a novel sequential experimental design | |
US20120310939A1 (en) | Systems And Methods For Clustering Time Series Data Based On Forecast Distributions | |
Xu et al. | Empirical stochastic branch-and-bound for optimization via simulation | |
Jankovic et al. | Towards feature-based performance regression using trajectory data | |
Peremezhney et al. | Combining Gaussian processes, mutual information and a genetic algorithm for multi-target optimization of expensive-to-evaluate functions | |
Brantley et al. | Efficient simulation budget allocation with regression | |
Brown et al. | Dynamic programs with shared resources and signals: Dynamic fluid policies and asymptotic optimality | |
Xiao et al. | Simulation optimization using genetic algorithms with optimal computing budget allocation | |
Argiento et al. | A “density-based” algorithm for cluster analysis using species sampling Gaussian mixture models | |
Karimi-Nasab et al. | Multi-objective production scheduling with controllable processing times and sequence-dependent setups for deteriorating items | |
Chong et al. | A data mining approach to process optimization without an explicit quality function | |
Wu et al. | Robust risk-aware option hedging | |
Marino et al. | Compressive Big Data Analytics: An ensemble meta-algorithm for high-dimensional multisource datasets | |
Lessani et al. | SGWR: similarity and geographically weighted regression | |
Goktas et al. | Using PLS-SEM and XAI for causal-predictive services marketing research | |
Porreca et al. | Identification of genetic network dynamics with unate structure | |
Almomani et al. | Selecting a good stochastic system for the large number of alternatives | |
Nishihara | Real options with synergies: Static versus dynamic policies | |
Murua et al. | Semiparametric Bayesian regression via Potts model |