[go: up one dir, main page]

Chang et al., 2006 - Google Patents

The 65nm 16MB On-Die L3 Cache for a Dual Core Multi-Threaded Xeon/sup~/Processor

Chang et al., 2006

Document ID
502190151714329422
Author
Chang J
Huang M
Shoemaker J
Benoit J
Chen S
Chen W
Chiu S
Ganesan R
Leong G
Lukka V
Rusu S
Srivastava D
Publication year
Publication venue
2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.

External Links

Snippet

The 16-way set associative, single-ported 16MB cache for the dual-core Xeonreg processor uses a 0.624 mum 2 cell in a 65nm 8-metal technology. Only 0.8% of the cache is powered up for an access. Sleep transistors are used in the SRAM array and peripherals. Dynamic …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • G06F12/0895Caches characterised by their organisation or structure of parts of caches, e.g. directory or tag array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/816Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout
    • G11C29/818Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout for dual-port memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/12Group selection circuits, e.g. for memory block selections, chip selection, array selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/04Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by G11C11/00
    • G11C5/14Power supply arrangements, e.g. Power down/chip (de)selection, layout of wiring/power grids, multiple supply levels

Similar Documents

Publication Publication Date Title
Chang et al. The 65-nm 16-MB shared on-die L3 cache for the dual-core Intel Xeon processor 7100 series
JP5190542B2 (en) Semiconductor memory device
KR101538303B1 (en) Reduced area memory array by using sense amplifier as write driver
US5943284A (en) Semiconductor memory device
Zhang et al. Highly-associative caches for low-power processors
Noguchi et al. Highly reliable and low-power nonvolatile cache memory with advanced perpendicular STT-MRAM for high-performance CPU
US8982659B2 (en) Bitline floating during non-access mode for memory arrays
Wuu et al. The asynchronous 24mb on-chip level-3 cache for a dual-core itanium/sup/spl reg//-family processor
Chen et al. A 22nm 2.5 MB slice on-die L3 cache for the next generation Xeon® processor
Lin et al. A 1-V 128-kb four-way set-associative CMOS cache memory using wordline-oriented tag-compare (WLOTC) structure with the content-addressable-memory (CAM) 10-transistor tag cell
KR20150090184A (en) Low-power sram cells
Shen et al. TS cache: A fast cache with timing-speculation mechanism under low supply voltages
US10043572B1 (en) VSS bitcell sleep scheme involving modified bitcell for terminating sleep regions
US8432756B1 (en) Collision prevention in a dual port memory
Chang et al. The 65nm 16MB On-Die L3 Cache for a Dual Core Multi-Threaded Xeon/sup~/Processor
Gupta et al. 1.56 GHz/0.9 V energy-efficient reconfigurable CAM/SRAM using 6T-CMOS bitcell
Mahmood et al. Realizing near-true voltage scaling in variation-sensitive L1 caches via fault buffers
Chien et al. Write-energy-saving ReRAM-based nonvolatile SRAM with redundant bit-write-aware controller for last-level caches
Nouripayam et al. A Low-Voltage 6T Dual-Port Configured SRAM with Wordline Boost in 28 nm FD-SOI
Nakata et al. 5-V operation variation-aware word-enhancing cache architecture using 7T/14T hybrid SRAM
KR102831540B1 (en) Rapid tag invalidation circuit
Selvan Adaptive Cache Power Management Strategies
Mali et al. Gating transistor power saving technique for power optimized code book SRAM
Rao et al. Exploiting non-uniform memory access patterns through bitline segmentation
Tzartzanis Static memory design