Jurca et al., 2006 - Google Patents
Media streaming with conservative delay on variable rate channelsJurca et al., 2006
View PDF- Document ID
- 4592058732485193154
- Author
- Jurca D
- Frossard P
- Publication year
- Publication venue
- 2006 IEEE International Conference on Multimedia and Expo
External Links
Snippet
We address the problem of delay-constrained streaming of multimedia packets over dynamic bandwidth channels. Efficient streaming solutions generally rely on the knowledge of the channel bandwidth, in order to select the media packets to be transmitted, according …
- 238000005457 optimization 0 abstract description 12
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2416—Real time traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/26—Explicit feedback to the source, e.g. choke packet
- H04L47/263—Source rate modification after feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/80—QoS aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/28—Flow control or congestion control using time considerations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/60—Media handling, encoding, streaming or conversion
- H04L65/601—Media manipulation, adaptation or conversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/60—Media handling, encoding, streaming or conversion
- H04L65/608—Streaming protocols, e.g. RTP or RTCP
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television, VOD [Video On Demand]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
- H04L29/0602—Protocols characterised by their application
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/64—Hybrid switching systems
- H04L12/6418—Hybrid transport
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Carlucci et al. | Analysis and design of the google congestion control for web real-time communication (WebRTC) | |
Jurca et al. | Video packet selection and scheduling for multipath streaming | |
Kanakia et al. | An adaptive congestion control scheme for real time packet video transport | |
Rudow et al. | Tambur: Efficient loss recovery for videoconferencing via streaming codes | |
Wu et al. | Energy-minimized multipath video transport to mobile devices in heterogeneous wireless networks | |
US9036624B2 (en) | Method of scheduling transmission in a communication network, corresponding communication node and computer program product | |
Liang et al. | Effect of delay and buffering on jitter-free streaming over random VBR channels | |
Darabkh et al. | Improving UDP performance using intermediate QoD‐aware hop system for wired/wireless multimedia communication systems | |
Wu et al. | Leveraging the delay-friendliness of TCP with FEC coding in real-time video communication | |
CN106921860A (en) | A kind of video transmission method and device end to end | |
Rexford et al. | A smoothing proxy service for variable-bit-rate streaming video | |
Viéron et al. | Real-time constrained TCP-compatible rate control for video over the Internet | |
Wu et al. | TCP-oriented raptor coding for high-frame-rate video transmission over wireless networks | |
Van Beek et al. | Delay-constrained rate adaptation for robust video transmission over home networks | |
Li et al. | Elastically reliable video transport protocol over lossy satellite links | |
Yun et al. | 100+ VoIP calls on 802.11 b: The power of combining voice frame aggregation and uplink-downlink bandwidth control in wireless LANs | |
Jurca et al. | Media streaming with conservative delay on variable rate channels | |
Altman et al. | On the utility of FEC mechanisms for audio applications | |
Ngatman et al. | Comprehensive study of transmission techniques for reducing packet loss and delay in multimedia over ip | |
Chandran et al. | A statistical approach to adaptive playout scheduling in voice over internet protocol communication | |
Shiang et al. | Content-aware tcp-friendly congestion control for multimedia transmission | |
Jurca et al. | Packet media streaming with imprecise rate estimation | |
Begen et al. | Timely inference of late/lost packets in real-time streaming applications | |
Convertino et al. | MMC05-1: an adaptive FEC scheme to reduce bursty losses in a 802.11 network | |
Estrada et al. | Analytical description of a parameter-based optimization of the quality of service for voIP communications |