[go: up one dir, main page]

Rees et al., 2016 - Google Patents

Magnetotelluric monitoring of coal seam gas depressurization

Rees et al., 2016

Document ID
4307141959242190614
Author
Rees N
Heinson G
Krieger L
Publication year
Publication venue
Geophysics

External Links

Snippet

The depressurization of coal seam gas formations causes in situ fluids to migrate through pores and fractures in the earth. The removal or discharge of large volumes of water from coal measures reduces in situ fluid pressure allowing natural gas to be released from the …
Continue reading at pubs.geoscienceworld.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/083Controlled source electromagnetic [CSEM] surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6163Electromagnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/082Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/30Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/003Seismic data acquisition in general, e.g. survey design
    • G01V1/005Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V99/00Subject matter not provided for in other groups of this subclass
    • G01V99/005Geomodels or geomodelling, not related to particular measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/02Determining existence or flow of underground water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V11/00GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Similar Documents

Publication Publication Date Title
Kiessling et al. Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface–downhole measurements from the CO2SINK test site at Ketzin (Germany)
Thiel Electromagnetic monitoring of hydraulic fracturing: Relationship to permeability, seismicity, and stress
Orange et al. The feasibility of reservoir monitoring using time-lapse marine CSEM
Peacock et al. Time-lapse magnetotelluric monitoring of an enhanced geothermal system
Andréis et al. Using CSEM to monitor production from a complex 3D gas reservoir—A synthetic case study
He et al. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet
Saracco et al. Localization of self‐potential sources in volcano‐electric effect with complex continuous wavelet transform and electrical tomography methods for an active volcano
Revil et al. The volcano‐electric effect
Xue et al. Identification of double-layered water-filled zones using TEM: A case study in China
Zhanxiang et al. Time–frequency electromagnetic method for exploring favorable deep igneous rock targets: a case study from North Xinjiang
Rees et al. Magnetotelluric monitoring of coal-seam gas and shale-gas resource development in Australia
Rees et al. Magnetotelluric monitoring of coal seam gas depressurization
Wang et al. Dynamic monitoring of coalbed methane reservoirs using Super-Low Frequency electromagnetic prospecting
Arafa-Hamed et al. Deep heat source detection using the magnetotelluric method and geothermal assessment of the Farafra Oasis, Western Desert, Egypt
Picotti et al. Sensitivity analysis from single-well ERT simulations to image CO2 migrations along wellbores
Costabel et al. Torus-nuclear magnetic resonance: Quasicontinuous airborne magnetic resonance profiling by using a helium-filled balloon
Campanyà et al. Subsurface characterization of the Pennsylvanian Clare Basin, western Ireland, by means of joint interpretation of electromagnetic geophysical data and well‐log data
Xu et al. Groundwater resources survey of Tongchuan city using the audio magnetotelluric method
Lumley et al. Advances in time-lapse geophysics—Introduction
Bujakowski et al. Integrated seismic and magnetotelluric exploration of the Skierniewice, Poland, geothermal test site
Coppo et al. Characterization of deep geothermal energy resources in low enthalpy sedimentary basins in Belgium using electro-magnetic methods–CSEM and MT results
Bayrak et al. Two-dimensional resistivity imaging in the Kızıldere geothermal field by MT and DC methods
MacLennan Monitoring CO2 storage using well-casing source electromagnetics
White et al. Integrated geophysical characterization and monitoring at the Aquistore CO2 storage site
Smith et al. Defining hydrogeophysical layers with multi‐scale geophysics for increased understanding of mountain basin recharge