Berkes et al., 1998 - Google Patents
Synthesis of Thieno [b] quinolizidines and Hofmann Elimination on Methiodides DerivativesBerkes et al., 1998
- Document ID
- 4281167304251458323
- Author
- Berkes D
- Netchitaïlo P
- Morel J
- Decroix B
- Publication year
- Publication venue
- Synthetic communications
External Links
Snippet
Synthesis of Thieno[b]quinolizidines and Hofmann Elimination on Methiodides Derivatives
Page 1 SYNTHETIC COMMUNICATIONS, 28(6), 949-956 (1998) SYNTHESIS OF THIENO[b]QUINOLIZIDINES
AND HOFMANN ELIMINATION ON METHIODIDES DERIVATIVES Dusan Berkesa, Pierre …
- GYEMKGSOLBKMFF-UHFFFAOYSA-N 6,7,8,9,9a,10-hexahydro-4H-thieno[2,3-b]quinolizine   C1C2CCCCN2CC2=C1SC=C2 0 title abstract description 6
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/04—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems ortho- or peri-condensed ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/68—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D211/72—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D211/78—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D497/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4145434A (en) | Tetracyclic derivatives and pharmaceutical compositions of matter | |
WO2001034602A2 (en) | Process and intermediates for the preparation of imidazolidinone alpha v integrin antagonists | |
Baxter et al. | Formal total synthesis of deserpidine demonstrating a versatile amino-Claisen rearrangement/Wenkert cyclization strategy for the preparation of functionalized yohimbane ring systems | |
US4220774A (en) | Vincadifformine synthesis process | |
Kuehne et al. | Total syntheses of tubotaiwine and 19, 20-dihydro-20-epi-akuammicine | |
Berkes et al. | Synthesis of Thieno [b] quinolizidines and Hofmann Elimination on Methiodides Derivatives | |
EP1317455B9 (en) | Process for preparing a substituted imidazopyridine compound | |
Glarner et al. | The photohydration of N-glycosylpyridinium salts and of related pyridinium N, O-acetals | |
JP5099830B2 (en) | Method for producing dibenzoxepin derivative | |
Éles et al. | Synthesis of vinca alakaloids and realated compounds 98. Oxidation with dimethyldioxirane of compounds containing the aspidospermane and quebrachamine ring system. A simple synthesis of (7S, 20S)‐(+)‐rhazidigenine and (2R, 7S, 20S)‐(+)‐rhazidine | |
FI80445B (en) | FOERFARANDE FOER FRAMSTAELLNING AV ETT NYTT, TERAPEUTISKT ANVAENDBART AZABICYKLO / 3.3.1 / NONAN. | |
USRE41366E1 (en) | Total synthesis of galanthamine, analogues and derivatives thereof | |
Hiemstra et al. | Transfer of functionalized carbon fragments via substituted 5, 10-methylentetetrahydrofolate models.: Approach to dihydroindole and indole alkaloids. | |
Dumitrascu et al. | New pyrrolo [1, 2-a][1, 10] phenanthrolines with helical chirality | |
US6426417B1 (en) | Processes and intermediates useful to make antifolates | |
Moldvai et al. | Chemistry of indoles carrying a basic function. Part VII. A new aspect of Stobbe reaction | |
Dugat et al. | Reactivity of hexahydrocarbazol-4-ones in Michael reactions: stereocontrolled formation of decahydropyrido [2, 3-d] carbazoles | |
Müller et al. | The Synthesis of n, n‐Dimethyl‐2‐(1‐phenyl‐2, 5‐cyclohexadien‐1‐yl)‐ethylamine and of Mesembrine‐Like Metabolites of this Potential Analgesic | |
JP4922761B2 (en) | Synthesis of substituted heterocyclic compounds. | |
Prager et al. | The chemistry of 5-oxodihydroisoxazoles. XI. The photolysis of 3-hydroxy-4-phenylisoxazol-5 (2H)-ones (phenyldisic acids) | |
Suárez-Castillo et al. | DMD mediated formal synthesis of (±)-coerulescine | |
IE45587B1 (en) | Biologically active tetracyclic compounds and pharmaceutical compositions containing them | |
EP0664293A1 (en) | 2-Phenyl-7-azabicycloheptanes and 6-phenyl-8-azabicyclo | |
Incze et al. | Chemistry of indoles carrying a basic function. Part 8: A new approach to the ergoline skeleton | |
US20040039013A1 (en) | Process for preparing a substituted imidazopyridine compound |