Alsaidi et al., 2020 - Google Patents
English poems categorization using text mining and rough set theoryAlsaidi et al., 2020
View PDF- Document ID
- 4175126766506101569
- Author
- Alsaidi S
- Sadeq A
- Abdullah H
- Publication year
- Publication venue
- Bulletin of Electrical Engineering and Informatics
External Links
Snippet
Abstract In recent years, Text Mining wasan important topic because of the growth of digital text data from many sources such as government document, Email, Social Media, Website, etc. The English poemsare one of the text data to categorization English Poems will use Text …
- 238000005065 mining 0 title abstract description 20
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/30684—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/30707—Clustering or classification into predefined classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30613—Indexing
- G06F17/30619—Indexing indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Allahyari et al. | A brief survey of text mining: Classification, clustering and extraction techniques | |
Jotheeswaran et al. | OPINION MINING USING DECISION TREE BASED FEATURE SELECTION THROUGH MANHATTAN HIERARCHICAL CLUSTER MEASURE. | |
Alsaidi et al. | English poems categorization using text mining and rough set theory | |
Romanov et al. | Application of natural language processing algorithms to the task of automatic classification of Russian scientific texts | |
Qazi et al. | An ontology-based term weighting technique for web document categorization | |
Barua et al. | Multi-class sports news categorization using machine learning techniques: resource creation and evaluation | |
Punitha et al. | Performance evaluation of semantic based and ontology based text document clustering techniques | |
Koutrika et al. | Generating reading orders over document collections | |
Hossari et al. | TEST: A terminology extraction system for technology related terms | |
Manimaran et al. | A survey of association rule mining in text applications | |
Novotný et al. | Text classification with word embedding regularization and soft similarity measure | |
Naseeba et al. | Machine learning models for news article classification | |
Tsarev et al. | Supervised and unsupervised text classification via generic summarization | |
Al Hasan et al. | Classification of multi-labeled text articles with reuters dataset using svm | |
Zobeidi et al. | Effective text classification using multi-level fuzzy neural network | |
Salman et al. | A New Multi-class Classification Method Based on Machine Learning to Document Classification. | |
Badawi et al. | Termset weighting by adapting term weighting schemes to utilize cardinality statistics for binary text categorization | |
Sharma et al. | Fusion approach for document classification using random forest and svm | |
Alharithi | Performance analysis of machine learning approaches in automatic classification of Arabic language | |
Jo | Index optimization with KNN considering similarities among features | |
Khalaf et al. | News retrieval based on short queries expansion and best matching | |
Parsafard et al. | Text classification based on discriminative-semantic features and variance of fuzzy similarity | |
Sayadi et al. | Multilayer classification of web pages using random forest and semi-supervised latent dirichlet allocation | |
Zandieh et al. | Clustering data text based on semantic | |
Rajasekar et al. | Comparison of machine learning algorithms in domain specific information extraction |