Chang-Hasnain et al., 1993 - Google Patents
Low threshold 0.98 μm aluminium-free strained-quantum-well InGaAs/InGaAsP/InGaP lasersChang-Hasnain et al., 1993
- Document ID
- 4036378357231833827
- Author
- Chang-Hasnain C
- Bhat R
- Leblanc H
- Koza M
- Publication year
- Publication venue
- Electronics Letters
External Links
Snippet
Aluminium-free strained-quantum-well In0. 2Ga0. 8As lasers employing novel two-stepped InGaAsP confinement layers and InGaP cladding layers on a GaAs substrate are demonstrated for the first time. Threshold current density as low as 58 A/cm2 is obtained with …
- 229910000530 Gallium indium arsenide 0 title description 7
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34306—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
- H01S5/405—Two-dimensional arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/3403—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. alGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhukov et al. | Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate | |
Fischer et al. | GaInAsN/GaAs laser diodes operating at 1.52 µm | |
Anan et al. | GaAsSb: A novel material for 1.3 µm VCSELs | |
Hohnsdorf et al. | Reduced threshold current densities of (GaIn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28–1.38 µm | |
Shoji et al. | Room temperature CW operation at the ground state of self-formed quantum dot lasers with multi-stacked dot layer | |
Erbert et al. | High-power tensile-strained GaAsP-AlGaAs quantum-well lasers emitting between 715 and 790 nm | |
Sellin et al. | High-reliability MOCVD-grown quantum dot laser | |
Craig et al. | Etched-mirror unstable-resonator semiconductor lasers | |
Kobayashi et al. | 632.7 nm CW operation (20° C) of AlGaInP visible laser diodes fabricated on (001) 6° off toward [110] GaAs substrate | |
Mawst et al. | High continuous wave output power InGaAs/InGaAsP/InGaP diode lasers: Effect of substrate misorientation | |
Wei et al. | High T 0 long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source | |
Yang et al. | 10 W near-diffraction-limited peak pulsed power from Al-free, 0.98 µm-emitting phase-locked antiguided arrays | |
Chang-Hasnain et al. | Low threshold 0.98 μm aluminium-free strained-quantum-well InGaAs/InGaAsP/InGaP lasers | |
Fujii et al. | Observation of stripe-direction dependence of threshold current density for AlGaInP laser diodes with CuPt-type natural superlattice in Ga/sub 0.5/In/sub 0.5/P active layer | |
Lee et al. | Asymmetric broad waveguide diode lasers (/spl lambda/= 980 nm) of large equivalent transverse spot size and low temperature sensitivity | |
Belenky et al. | High-power 2.3 µm laser arrays emitting 10 W CW at room temperature | |
Wu et al. | High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers | |
Frateschi et al. | Low-threshold single-quantum-well InGaAs/GaAs lasers grown by metal-organic chemical vapor deposition on structure substrates | |
Zmudzinski et al. | 1 W diffraction-limited-beam operation of resonant-optical-waveguide diode laser arrays at 0.98 μm | |
Tsang et al. | Low‐threshold InGaAs strained‐layer quantum well lasers (λ= 0.98 μm) with GaInP cladding layers prepared by chemical beam epitaxy | |
Yang et al. | Efficient continuous-wave lasing operation of a narrow-stripe oxide-confined GaInNAs-GaAs multiquantum-well laser grown by MOCVD | |
Iwai et al. | High-performance 1.3-/spl mu/m InAsP strained-layer quantum-well ACIS (Al-oxide confined inner stripe) lasers | |
Ko et al. | Low threshold MBE-grown AlInGaAs/AlGaAs strained multiquantum-well lasers by rapid thermal annealing | |
Mawst et al. | MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers | |
Tanaka et al. | Lasing operation up to 200 K in the wavelength range of 570–590 nm by GaInP/AlGaInP double‐heterostructure laser diodes on GaAsP substrates |