Zhang et al., 2021 - Google Patents
Autrascale: An automated and transfer learning solution for streaming system auto-scalingZhang et al., 2021
View PDF- Document ID
- 3917737684133571940
- Author
- Zhang L
- Zheng W
- Li C
- Shen Y
- Guo M
- Publication year
- Publication venue
- 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
External Links
Snippet
The complexity and variability of streaming data have brought a great challenge to the elasticity of the data processing systems. Streaming systems, such as Flink and Storm, need to adapt to the changes of workload with auto-scaling to meet the QoS requirements while …
- 238000004422 calculation algorithm 0 abstract description 41
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
- G06F9/5088—Techniques for rebalancing the load in a distributed system involving task migration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3466—Performance evaluation by tracing or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3442—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for planning or managing the needed capacity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/885—Monitoring specific for caches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/86—Event-based monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12010167B2 (en) | Automated server workload management using machine learning | |
US10831633B2 (en) | Methods, apparatuses, and systems for workflow run-time prediction in a distributed computing system | |
Ganapathi et al. | Statistics-driven workload modeling for the cloud | |
Cheng et al. | Improving performance of heterogeneous mapreduce clusters with adaptive task tuning | |
Mishra et al. | Esp: A machine learning approach to predicting application interference | |
Polo et al. | Resource-aware adaptive scheduling for mapreduce clusters | |
Zhang et al. | Autrascale: An automated and transfer learning solution for streaming system auto-scaling | |
Tuli et al. | Start: Straggler prediction and mitigation for cloud computing environments using encoder lstm networks | |
Li et al. | Supporting scalable analytics with latency constraints | |
Kalim et al. | Caladrius: A performance modelling service for distributed stream processing systems | |
Noel et al. | Towards self-managing cloud storage with reinforcement learning | |
Huang et al. | Novel heuristic speculative execution strategies in heterogeneous distributed environments | |
Pérez et al. | An offline demand estimation method for multi-threaded applications | |
Thamsen et al. | Ellis: Dynamically scaling distributed dataflows to meet runtime targets | |
Rolik et al. | Dynamie management of data center resources using reinforcement learning | |
Jägemar et al. | A scheduling architecture for enforcing quality of service in multi-process systems | |
Cusack et al. | Escra: Event-driven, sub-second container resource allocation | |
CN112000460A (en) | A method and related equipment for service expansion and contraction based on improved Bayesian algorithm | |
Pfister et al. | Daedalus: Self-adaptive horizontal autoscaling for resource efficiency of distributed stream processing systems | |
Kremer-Herman et al. | A lightweight model for right-sizing master-worker applications | |
Li et al. | Toward optimal operator parallelism for stream processing topology with limited buffers | |
Song et al. | An automatic scaling system for online application with microservices architecture | |
Koch et al. | SMiPE: estimating the progress of recurring iterative distributed dataflows | |
Wang et al. | Model-based scheduling for stream processing systems | |
Sang et al. | Cougar: A general framework for jobs optimization in cloud |