Chen et al., 2007 - Google Patents
Optimal burst scheduling in optical burst switched networksChen et al., 2007
View PDF- Document ID
- 3900122688427725504
- Author
- Chen Y
- Turner J
- Mo P
- Publication year
- Publication venue
- Journal of Lightwave Technology
External Links
Snippet
Optical burst switching (OBS) is an emerging technology that allows variable size data bursts to be transported directly over dense wavelength division multiplexing links. In order to make OBS a viable solution, the burst-scheduling algorithms need to be able to utilize the …
- 230000003287 optical 0 title abstract description 46
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
- H04L2012/5678—Traffic aspects, e.g. arbitration, load balancing, smoothing, buffer management
- H04L2012/5679—Arbitration or scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
- H04L2012/5638—Services, e.g. multimedia, GOS, QOS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0039—Electrical control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0066—Provisions for optical burst or packet networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/04—Selecting arrangements for multiplex systems for time-division multiplexing
- H04Q11/0428—Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
- H04Q11/0478—Provisions for broadband connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding through a switch fabric
- H04L49/253—Connections establishment or release between ports
- H04L49/254—Centralized controller, i.e. arbitration or scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/15—Interconnection of switching modules
- H04L49/1553—Interconnection of ATM switching modules, e.g. ATM switching fabrics
- H04L49/1561—Distribute and route fabrics, e.g. Batcher-Banyan
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/30—Peripheral units, e.g. input or output ports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/20—Support for services or operations
- H04L49/201—Multicast or broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/50—Overload detection; Overload protection
- H04L49/505—Corrective Measures, e.g. backpressure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/10—Switching fabric construction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Optimal burst scheduling in optical burst switched networks | |
Xiong et al. | Control architecture in optical burst-switched WDM networks | |
Verma et al. | Optical burst switching: a viable solution for terabit IP backbone | |
Zhang et al. | Absolute QoS differentiation in optical burst-switched networks | |
Chlamtac et al. | Quadro-star: A high performance optical WDM star network | |
US6898205B1 (en) | Robust transport of IP traffic over wdm using optical burst switching | |
Vokkarane et al. | Segmentation-based nonpreemptive channel scheduling algorithms for optical burst-switched networks | |
US8150264B2 (en) | Methods for non-wavelength-converting multi-lane optical switching | |
US20020118419A1 (en) | Unified associative memory of data channel schedulers in an optical router | |
Xiong et al. | Design and analysis of optical burst-switched networks | |
US20020118421A1 (en) | Channel scheduling in optical routers | |
Bregni et al. | Architectures and performance of AWG-based optical switching nodes for IP networks | |
Pattavina | Architectures and performance of optical packet switching nodes for IP networks | |
EP1439730B1 (en) | Congestion control in an optical burst switched network | |
Farahmand et al. | Practical priority contention resolution for slotted optical burst switching networks | |
US20020054732A1 (en) | Optical burst scheduling using partitioned channel groups | |
Chang et al. | Efficient channel-scheduling algorithm in optical burst switching architecture | |
Nandi et al. | Best fit void filling algorithm in optical burst switching networks | |
Angelopoulos et al. | An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost | |
WO2001084875A2 (en) | Robust transport of ip traffic over wdm using optical burst switching | |
Elek et al. | Photonic slot routing: a cost effective approach to designing all-optical access and metro networks | |
Asghari et al. | Contentionless transmission in buffer-less slotted optical packet switched networks | |
Maach et al. | Segmented Burst Switching: Enhancement of Optical Burst Switching to decrease loss rate and support quality of service | |
Junghans et al. | Resource reservation in optical burst switching: Architectures and realizations for reservation modules | |
Chen et al. | Design of an ultra fast pipelined wavelength scheduler for optical burst switching |