Snyder, 2021 - Google Patents
Miniaturized Mass Spectrometry–Instrumentation, Technology, and ApplicationsSnyder, 2021
- Document ID
- 3885962077302718293
- Author
- Snyder D
- Publication year
- Publication venue
- Portable Spectroscopy and Spectrometry
External Links
Snippet
This article describes the evolution of miniature and portable mass spectrometers since the first miniature ion trap mass analyzers were developed and characterized in the 1990s. Key technological advancements in vacuum systems, sampling and ionization, mass analyzers …
- 238000005516 engineering process 0 title description 14
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/4205—Device types
- H01J49/422—Two-dimensional RF ion traps
- H01J49/4225—Multipole linear ion traps, e.g. quadrupoles, hexapoles
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/161—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/165—Electrospray ionisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/107—Arrangements for using several ion sources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0409—Sample holders or containers
- H01J49/0413—Sample holders or containers for automated handling
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0468—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/36—Radio frequency spectrometers, e.g. Bennett-type spectrometers, Redhead-type spectrometers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/062—Ion guides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/004—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
- H01J49/0045—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0031—Step by step routines describing the use of the apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode separating and identifying ionized molecules based on their mobility in a carrier gas, i.e. ion mobility spectrometry
- G01N27/624—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode separating and identifying ionized molecules based on their mobility in a carrier gas, i.e. ion mobility spectrometry using a non-uniform electric field, i.e. differential mobility spectrometry [DMS] or high-field asymmetric-waveform ion-mobility spectrometry [FAIMS]
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Riter et al. | Analytical performance of a miniature cylindrical ion trap mass spectrometer | |
Liu et al. | Tandem analysis by a dual-trap miniature mass spectrometer | |
Ouyang et al. | Handheld miniature ion trap mass spectrometers | |
US20100320377A1 (en) | Low voltage, high mass range ion trap spectrometer and analyzing methods using such a device | |
Xu et al. | Pseudo-multiple reaction monitoring (pseudo-MRM) mode on the “brick” mass spectrometer, using the grid-SWIFT waveform | |
Polettini | Applications of LC-MS in Toxicology | |
Maciel et al. | Electron ionization mass spectrometry: Quo vadis? | |
Zhai et al. | Boosting the sensitivity and selectivity of a miniature mass spectrometer using a hybrid ion funnel | |
Creaser et al. | A tandem ion trap/ion mobility spectrometer | |
Dunn | Mass spectrometry in systems biology: An introduction | |
Wang et al. | Portable mass spectrometry system: Instrumentation, applications, and path to ‘omics analysis | |
Blakeman et al. | High pressure mass spectrometry of volatile organic compounds with ambient air buffer gas | |
Ruan et al. | Hexapole-assisted continuous atmospheric pressure interface for a high-pressure photoionization miniature ion trap mass spectrometer | |
Brewer et al. | Atmospheric identification of active ingredients in over‐the‐counter pharmaceuticals and drugs of abuse by atmospheric pressure glow discharge mass spectrometry (APGD‐MS) | |
US12261032B2 (en) | Low-power mass interrogation system and assay for determining vitamin D levels | |
Snyder | Miniaturized Mass Spectrometry–Instrumentation, Technology, and Applications | |
Blakeman et al. | Development of high‐pressure mass spectrometry for handheld and benchtop analyzers | |
Harvey | Mass spectrometric detectors for gas chromatography | |
Lovestead et al. | Gas Chromatography-Mass Spectrometry (GC-MS) | |
Williams et al. | Advances in trace element solid sample analysis: laser ablation laser ionization TOF mass spectrometry (LALI-TOF-MS) | |
US7576324B2 (en) | Ion detection methods, mass spectrometry analysis methods, and mass spectrometry instrument circuitry | |
Leuthold et al. | Direct ambient analysis of pharmaceutical and ecstasy tablets | |
81 | A ‘Periodic Table’of mass spectrometry instrumentation and acronyms | |
Prentice et al. | Instrumentation for MALDI-MSI–Part II detection systems | |
Schmitz | State of the Art in the LC/MS |