[go: up one dir, main page]

Amar et al., 2012 - Google Patents

Bias dependence of gallium nitride micro-electro-mechanical systems actuation using a two-dimensional electron gas

Amar et al., 2012

View PDF
Document ID
382767822020218305
Author
Amar A
Faucher M
Grimbert B
Cordier Y
François M
Tilmant P
Werquin M
Zhang V
Ducatteau D
Gaquiere C
Buchaillot L
Théron D
Publication year
Publication venue
Applied physics express

External Links

Snippet

The piezoelectric actuation of a micro-electro-mechanical system (MEMS) resonator based on an AlGaN/GaN heterostructure is studied under various bias conditions. Using an actuator electrode that is also a transistor gate, we correlate the mechanical behaviour to the …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/16Selection of materials
    • H01L41/18Selection of materials for piezo-electric or electrostrictive devices, e.g. bulk piezo-electric crystals
    • H01L41/187Ceramic compositions, i.e. synthetic inorganic polycrystalline compounds incl. epitaxial, quasi-crystalline materials
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of micro-electro-mechanical resonators
    • H03H2009/02488Vibration modes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/22Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
    • H01L41/31Applying piezo-electric or electrostrictive parts or bodies onto an electrical element or another base
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/02Details
    • H01L41/04Details of piezo-electric or electrostrictive devices
    • H01L41/047Electrodes or electrical connection arrangements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/08Piezo-electric or electrostrictive devices
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes

Similar Documents

Publication Publication Date Title
Rais-Zadeh et al. Gallium nitride as an electromechanical material
Chowdhury et al. TEM observation of crack-and pit-shaped defects in electrically degraded GaN HEMTs
Ansari et al. A thickness-mode AlGaN/GaN resonant body high electron mobility transistor
Zimmermann et al. Piezoelectric GaN sensor structures
Popa et al. 2DEG electrodes for piezoelectric transduction of AlGaN/GaN MEMS resonators
Popa et al. Switchable piezoelectric transduction in AlGaN/GaN MEMS resonators
Pan et al. Thin-film piezoelectric-on-substrate resonators with Q enhancement and TCF reduction
Zhu et al. Non-reciprocal acoustic transmission in a GaN delay line using the acoustoelectric effect
Ansari et al. Gallium nitride-on-silicon micromechanical overtone resonators and filters
CN109891748A (en) The surface acoustic wave RFID sensor sensed for material and structure
Ng et al. An etch hole-free process for temperature-compensated, high Q, encapsulated resonators
US20210091746A1 (en) Multifunctional Integrated Acoustic Devices and Systems Using Epitaxial Materials
Gokhale et al. High performance bulk mode gallium nitride resonators and filters
Ansari et al. Monolithic integration of GaN-based micromechanical resonators and HEMTs for timing applications
Amar et al. Bias dependence of gallium nitride micro-electro-mechanical systems actuation using a two-dimensional electron gas
Brueckner et al. Micro‐and nano‐electromechanical resonators based on SiC and group III‐nitrides for sensor applications
Ansari et al. A high-Q AlGaN/GaN phonon trap with integrated HEMT read-out
US9917244B2 (en) Resonant body high electron mobility transistor
EP2653844A1 (en) Integrated piezoelectric sensor for static pressure measurement
Kar et al. Aluminum Nitride (AlN) film based acoustic devices: material synthesis and device fabrication
Leclaire et al. AlGaN/GaN HEMTs with very thin buffer on Si (111) for nanosystems applications
Mansoorzare et al. Acoustoelectric amplification in lateral-extensional composite piezo-silicon resonant cavities
Leclaire et al. Piezoelectric MEMS resonators based on ultrathin epitaxial GaN heterostructures on Si
Faucher et al. GaN: A multifunctional material enabling MEMS resonators based on amplified piezoelectric detection
Lu et al. A novel GaN-based monolithic SAW/HEMT oscillator on silicon