Xu et al., 2022 - Google Patents
Concentration performance of solar collector integrated compound parabolic concentrator and flat microchannel tube with tracking systemXu et al., 2022
View PDF- Document ID
- 3756652013320708586
- Author
- Xu R
- He Z
- Yang L
- Xu S
- Wang R
- Wang H
- Publication year
- Publication venue
- Renewable Energy
External Links
Snippet
The compound parabolic concentrator is a non-imaging concentrator that can concentrate solar radiation without tracking system. However, as the concentration ratio increases, the maximum half acceptance angle and the effective working hours decrease. To increase the …
- 150000001875 compounds 0 title abstract description 30
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling solar thermal engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24J—PRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24J2/00—Use of solar heat, e.g. solar heat collectors
- F24J2/04—Solar heat collectors having working fluid conveyed through collector
- F24J2/06—Solar heat collectors having working fluid conveyed through collector having concentrating elements
- F24J2/10—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
- F24J2/18—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements spaced, opposed interacting reflecting surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24J—PRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24J2/00—Use of solar heat, e.g. solar heat collectors
- F24J2/04—Solar heat collectors having working fluid conveyed through collector
- F24J2/06—Solar heat collectors having working fluid conveyed through collector having concentrating elements
- F24J2/10—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
- F24J2/14—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements semi-cylindrical or cylindro-parabolic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24J—PRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24J2/00—Use of solar heat, e.g. solar heat collectors
- F24J2/04—Solar heat collectors having working fluid conveyed through collector
- F24J2/06—Solar heat collectors having working fluid conveyed through collector having concentrating elements
- F24J2/10—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
- F24J2002/1076—Reflectors layout
- F24J2002/108—Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24J—PRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24J2/00—Use of solar heat, e.g. solar heat collectors
- F24J2/04—Solar heat collectors having working fluid conveyed through collector
- F24J2/06—Solar heat collectors having working fluid conveyed through collector having concentrating elements
- F24J2/10—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
- F24J2/16—Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements having flat plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24J—PRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24J2/00—Use of solar heat, e.g. solar heat collectors
- F24J2/46—Component parts, details or accessories of solar heat collectors
- F24J2/52—Arrangement of mountings or supports
- F24J2/54—Arrangement of mountings or supports specially adapted for rotary movement
- F24J2/5403—Arrangement of mountings or supports specially adapted for rotary movement with only one rotation axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances
- Y02B40/10—Relating to domestic cooking
- Y02B40/18—Solar cooking stoves or furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24J—PRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24J2/00—Use of solar heat, e.g. solar heat collectors
- F24J2/38—Use of solar heat, e.g. solar heat collectors employing tracking means
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiu et al. | Comparative study on solar flat-plate collectors coupled with three types of reflectors not requiring solar tracking for space heating | |
Kalogirou | Solar thermal collectors and applications | |
Zhu et al. | Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system | |
Zhu et al. | Design and thermal performances of a scalable linear Fresnel reflector solar system | |
Achour et al. | Performance assessment of an integrated solar combined cycle in the southern of Algeria | |
Barbón et al. | Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector | |
Xu et al. | Concentration performance of solar collector integrated compound parabolic concentrator and flat microchannel tube with tracking system | |
Tang et al. | Design and optical performance of CPC based compound plane concentrators | |
CN101098112A (en) | Self-radiating solar energy concentrating photovoltaic power generation device | |
Chen et al. | Solar collector with asymmetric compound parabolic concentrator for winter energy harvesting and summer overheating reduction: Concept and prototype device | |
Wu et al. | Photothermal/day lighting performance analysis of a multifunctional solid compound parabolic concentrator for an active solar greenhouse roof | |
Hadjiat et al. | Design and analysis of a novel ICS solar water heater with CPC reflectors | |
Widyolar et al. | Solar thermal process heating with the external compound parabolic concentrator (XCPC)–45 m2 experimental array performance, annual generation (kWh/m2-year), and economics | |
Xuan et al. | Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency | |
Beltagy | A secondary reflector geometry optimization of a Fresnel type solar concentrator | |
Chen et al. | Comparative investigation on photo-thermal performance of both compound parabolic concentrator and ordinary all-glass evacuated tube absorbers: An incorporated experimental and theoretical study | |
RU2303205C1 (en) | Solar power plant | |
Zhang et al. | Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber | |
Al Imam et al. | Effect of novel phase change material (PCM) encapsulated design on thermal performance of solar collector | |
Gupta et al. | Dual Fresnel lens and segmented mirrors based efficient solar concentration system without tracking sun for solar thermal energy generation | |
Qenawy et al. | Design and thermal performance analysis of concentrating solar power tower for water heating systems | |
Zhang et al. | Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape | |
Pearce et al. | Numerical simulation of the direct application of compound parabolic concentrators to a single effect basin solar still | |
Duan et al. | Promote optical performance of linear Fresnel micro-concentrator by an offset-axis mirror layout in building-integrated PV/T application | |
Deng et al. | Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator |