Henderson et al., 1991 - Google Patents
Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumorsHenderson et al., 1991
- Document ID
- 3732491469716327776
- Author
- Henderson B
- Sumlin A
- Owczarczak B
- Dougherty T
- Publication year
- Publication venue
- Journal of Photochemistry and Photobiology B: Biology
External Links
Snippet
Abstract Bacteriochlorophyll-a (bChla), which absorbs light of 780 nm wavelength, was tested for in vivo photodynamic activity in the SMT-F and RIF transplantable mouse tumor systems. High performance liquid chromatography (HPLC) analysis of tissue extracts …
- 206010028980 Neoplasm 0 title abstract description 68
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0076—PDT with expanded (metallo)porphyrins, i.e. having more than 20 ring atoms, e.g. texaphyrins, sapphyrins, hexaphyrins, pentaphyrins, porphocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0659—Radiation therapy using light characterised by the wavelength of light used infra-red
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/063—Radiation therapy using light comprising light transmitting means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/065—Light sources therefor
- A61N2005/0651—Diodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
- A61K41/0038—Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings, hand-pieces therefor
- A61B2018/2255—Optical elements at the distal end of probe tips
- A61B2018/2261—Optical elements at the distal end of probe tips with scattering, diffusing or dispersing of light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
- A61K41/0009—Inactivation or decontamination of a medicinal preparation prior to administration to the animal or human, e.g. : inactivation of viruses or bacteria for vaccines, sterilisation by electromagnetic radiation
- A61K41/0019—Inactivation or decontamination of a medicinal preparation prior to administration to the animal or human, e.g. : inactivation of viruses or bacteria for vaccines, sterilisation by electromagnetic radiation by UV, IR, Rx or gamma rays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
- A61K41/0028—Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Henderson et al. | Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumors | |
Lui et al. | Photodynamic therapy in dermatology: recent developments | |
Fingar et al. | Drug and light dose dependence of photodynamic therapy: a study of tumor and normal tissue response | |
Gomer et al. | Properties and applications of photodynamic therapy | |
Bellnier et al. | Murine pharmacokinetics and antitumor efficacy of the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a | |
Morgan et al. | New photosensitizers for photodynamic therapy: combined effect of metallopurpurin derivatives and light on transplantable bladder tumors | |
US4651739A (en) | Light-induced killing of carcinoma cells | |
US5368841A (en) | Photodynamic therapy for the destruction of the synovium in the treatment of rheumatoid arthritis and the inflammatory arthritides | |
Kessel | Photosensitization with derivatives of haematoporphyrin | |
Verger et al. | From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy | |
Kostron et al. | Photodynamic therapy of malignant brain tumours: a phase III trial | |
Boyle et al. | Biological activities of phthalocyanines. XIV. Effect of hydrophobic phthalimidomethyl groups on the in vivo phototoxicity and mechanism of photodynamic action of sulphonated aluminium phthalocyanines | |
Morgan et al. | Metallopurpurins and light: effect on transplantable rat bladder tumors and murine skin | |
Biolo et al. | Photodynamic therapy of B16 pigmented melanoma with liposome‐delivered Si (IV)‐naphthalocyanine | |
Chin et al. | Emerging strategies in near-infrared light triggered drug delivery using organic nanomaterials | |
Richter et al. | Characterization of benzoporphyrin derivative, a new photosensitizer | |
US8180444B2 (en) | Enhanced PhotoDynamic Therapy with immune system assist | |
Busetti et al. | High efficiency of benzoporphyrin derivative in the photodynamic therapy of pigmented malignant melanoma | |
Cowled et al. | Photocytotoxicity in vivo of haematoporphyrin derivative components | |
Morgan et al. | Verdins: new photosensitizers for photodynamic therapy | |
Selman et al. | Copper benzochlorin, a novel photosensitizer for photodynamic therapy: effects on a transplantable urothelial tumor | |
Noske et al. | Photodynamic therapy of malignant glioma: a review of literature | |
Rovers et al. | In Vivo Photodynamic Characteristics of the Near‐Infrared Photosensitizer 5, 10, 15, 20‐Tetrakis (M‐Hydroxyphenyl) Bacteriochlorin¶ | |
Miller | Photodynamic therapy: the sensitization of cancer cells to light | |
Dougherty | Photodynamic therapy of cancer |