[go: up one dir, main page]

Latha et al., 2019 - Google Patents

Residue-to-Binary converters for the seven moduli set {2 n-5-1, 2 n-3-1, 2 n-2+ 1, 2 n-1-1, 2 n-1+ 1, 2n, 2 n+ 1} for n even

Latha et al., 2019

Document ID
3243205484071788134
Author
Latha M
Rachh R
Mohan P
Publication year
Publication venue
2019 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia)

External Links

Snippet

In this paper, a Residue-to-Binary converter for the seven moduli set {2 n-5-1, 2 n-3-1, 2 n-2+ 1, 2 n-1-1, 2 n-1+ 1, 2 n, 2 n+ 1} for n even is presented. This moduli set is derived from a previously described 8 moduli set which has two moduli with one common factor, by deleting …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5334Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
    • G06F7/5336Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5318Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with column wise addition of partial products, e.g. using Wallace tree, Dadda counters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/535Dividing only
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/499Denomination or exception handling, e.g. rounding, overflow
    • G06F7/49942Significance control
    • G06F7/49947Rounding
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/499Denomination or exception handling, e.g. rounding, overflow
    • G06F7/49994Sign extension
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/483Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system, floating-point numbers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • G06F2207/3808Details concerning the type of numbers or the way they are handled
    • G06F2207/3812Devices capable of handling different types of numbers
    • G06F2207/382Reconfigurable for different fixed word lengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/535Indexing scheme relating to groups G06F7/535 - G06F7/5375
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/483Indexing scheme relating to group G06F7/483
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Similar Documents

Publication Publication Date Title
Lang et al. A radix-10 combinational multiplier
Kaivani et al. Floating-point butterfly architecture based on binary signed-digit representation
Cui et al. Design of high-speed wide-word hybrid parallel-prefix/carry-select and skip adders
Torabi et al. Low-power/cost RNS comparison via partitioning the dynamic range
Jaberipur et al. On building general modular adders from standard binary arithmetic components
Ushasree et al. VLSI implementation of a high speed single precision floating point unit using verilog
Matutino et al. An efficient scalable RNS architecture for large dynamic ranges
Wang et al. $(M, p, k) $-Friendly Points: A Table-Based Method to Evaluate Trigonometric Function
Latha et al. Residue-to-Binary converters for the seven moduli set {2 n-5-1, 2 n-3-1, 2 n-2+ 1, 2 n-1-1, 2 n-1+ 1, 2n, 2 n+ 1} for n even
Cui et al. A parallel decimal multiplier using hybrid binary coded decimal (BCD) codes
US20230086090A1 (en) Methods and Apparatus for Quotient Digit Recoding in a High-Performance Arithmetic Unit
Mohan et al. Evaluation of Mixed-Radix Digit Computation Techniques for the Three Moduli RNS {2 n− 1, 2 n, 2 n+ 1− 1}
Nannarelli A multi-format floating-point multiplier for power-efficient operations
Ananda Mohan Reverse conversion using core function, CRT and mixed radix conversion
US6826588B2 (en) Method and apparatus for a fast comparison in redundant form arithmetic
US4935892A (en) Divider and arithmetic processing units using signed digit operands
Pettenghi et al. Efficient RNS Reverse Converters for Moduli Sets with Dynamic Ranges Up to (10 n+ 1)-bit
Noorimehr et al. Efficient Reverse Converters for 4-Moduli Sets {2 2 n-1-1, 2 n, 2 n+ 1, 2 n-1} and {2 2 n-1, 2 2 n-1-1, 2 n+ 1, 2 n-1} Based on CRTs Algorithm
SalehiTabrizi et al. Designing Efficient Two-Level Reverse Converters for Moduli Set {2 2 n+ 1-1, 2 2 n, 2 n-1}
Beuchat et al. Multiplication algorithms for radix-2 RN-codings and two's complement numbers
Zhu et al. On high-performance parallel decimal fixed-point multiplier designs
Amaricai et al. SRT radix-2 dividers with (5, 4) redundant representation of partial remainder
Prusty et al. A modified redundant binary adder for efficient VLSI architecture
Parhami Comments on" Evaluation of A+ B= K conditions without carry propagation
Al-Khateeb Design of an ALU for RNS Using CMOS Technology