[go: up one dir, main page]

Kim et al., 2012 - Google Patents

A 12-b, 30-MS/s, 2.95-mW pipelined ADC using single-stage class-AB amplifiers and deterministic background calibration

Kim et al., 2012

Document ID
3178672665784210393
Author
Kim J
Murmann B
Publication year
Publication venue
IEEE Journal of Solid-State Circuits

External Links

Snippet

A 12-b 30-MS/s pipelined ADC is realized using single-stage, low-gain, class-AB amplifiers, which can dynamically provide the load currents without large static currents. In addition, the amplifiers are power cycled and turned on only during residue amplification to enable further …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0626Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers

Similar Documents

Publication Publication Date Title
Kim et al. A 12-b, 30-MS/s, 2.95-mW pipelined ADC using single-stage class-AB amplifiers and deterministic background calibration
Gregoire et al. An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain
Chuang et al. A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter
Lim et al. A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC
Li et al. A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique
Sadollahi et al. An 11-bit 250-nW 10-kS/s SAR ADC with doubled input range for biomedical applications
Chiu et al. A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR
Yu et al. A 2.5-V, 12-b, 5-Msample/s pipelined cmos adc
Sahoo et al. A 12-bit 200-mhz cmos adc
Ahmed et al. A 50-MS/s (35 mW) to 1-kS/s (15/spl mu/W) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation
Lee et al. A 12b 50 MS/s 21.6 mW 0.18$\mu $ m CMOS ADC Maximally Sharing Capacitors and Op-Amps
Tseng et al. A 10-b 320-MS/s stage-gain-error self-calibration pipeline ADC
Kuppambatti et al. Current reference pre-charging techniques for low-power zero-crossing pipeline-SAR ADCs
Hafiz et al. Immediate calibration of operational amplifier gain error in pipelined ADCs using extended correlated double sampling
Zjajo et al. Analog to Digital Conversion
Jarvinen et al. A 12-bit ratio-independent algorithmic A/D converter for a capacitive sensor interface
Choi et al. A 1.2-V 12-b 120-MS/s SHA-free dual-channel Nyquist ADC based on midcode calibration
Paul et al. A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC.
Chandrashekar et al. A 10 b 50 MS/s opamp-sharing pipeline A/D with current-reuse OTAs
Chen et al. Design techniques for 1.5-V low-power CMOS current-mode cyclic analog-to-digital converters
Woo et al. 1.2 V 10-bit 75 MS/s pipelined ADC with phase-dependent gain-transition CDS
Monk et al. Iterative gain enhancement in an algorithmic ADC
Larsson et al. A 360 fJ/conversion-step, 14-bit, 100 MS/s, digitally background calibrated pipelined ADC in 130-nm CMOS
Sundström et al. A 10b 1GS/s inverter-based pipeline ADC in 65nm CMOS
Zahrai et al. A 12b 100ms/s highly power efficient pipelined adc for communication applications