[go: up one dir, main page]

Balamurugan et al., 2022 - Google Patents

DOA tracking for seamless connectivity in beamformed IoT-based drones

Balamurugan et al., 2022

Document ID
312785676614349855
Author
Balamurugan N
Mohan S
Adimoolam M
John A
Wang W
et al.
Publication year
Publication venue
Computer Standards & Interfaces

External Links

Snippet

In recent times, there has been a surge of interest around the usage of adaptive antenna arrays of Internet of Things (IoT) based Drones in the communication systems. Adaptive antenna arrays have the ability to form customized radiation patterns based on the changes …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised active aerial units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using aerials spaced apart and measuring frequency phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single aerial system capable of giving simultaneous indications of the directions of different signals

Similar Documents

Publication Publication Date Title
Balamurugan et al. DOA tracking for seamless connectivity in beamformed IoT-based drones
US7057555B2 (en) Wireless LAN with distributed access points for space management
Sayeed et al. Continuous aperture phased MIMO: A new architecture for optimum line-of-sight links
Vukmirović et al. Position estimation with a millimeter-wave massive MIMO system based on distributed steerable phased antenna arrays
Shao et al. Target-mounted intelligent reflecting surface for secure wireless sensing
Zhuang et al. Machine-learning-based high-resolution DOA measurement and robust directional modulation for hybrid analog-digital massive MIMO transceiver
Chowdhury et al. Performance analysis of MUSIC algorithm for DOA estimation with varying ULA parameters
Rezaie et al. Deep transfer learning for location-aware millimeter wave beam selection
Yang et al. Joint antenna selection and beamforming for area surveillance with spatially distributed array radar
Kumbar Adaptive beamforming smart antenna for wireless communication system
Elbir et al. Terahertz-band direction finding with beam-split and mutual coupling calibration
Hao et al. Adaptive anti-jamming beamforming based on the preprocessing deep reinforcement learning for downlink navigation communication
Alsalti et al. Direction of arrival for uniform circular array using directional antenna elements
Shi et al. DOA estimation using massive receive MIMO: Basic principles, key techniques, performance analysis, and applications
Zhao et al. Active phased array radar-based 2D beamspace MUSIC channel estimation for an integrated radar and communication system
Bing A simplified genetic algorithm in multi-beam combination for mmWave communication system
Ihedrane et al. 2-D MUSIC algorithm based on uniform triangular array
Xie et al. Position-aided fast beam training in mm-wave multiuser MIMO systems
Mosteghanemi et al. A Review of The State of the Art of Beamforming Techniques and AI
Pastrav et al. Conceptual architecture of a retrodirective antenna system with beamforming capabilities
Nxumalo Efficient method of estimating Direction of Arrival (DOA) in communications systems
Almeida et al. Efficient Channel Estimation for LIS-based Systems
Aung et al. Performance comparison of DOA estimation algorithms for smart antenna
Luo et al. Millimeter-wave radar-enabled multi-user beamforming optimization for reconfigurable intelligent surfaces
Paaso Direction of arrival estimation algorithms for leaky-wave antennas and antenna arrays