[go: up one dir, main page]

Yu et al., 2010 - Google Patents

A system with adaptive weight allocation algorithm for accuracy improving

Yu et al., 2010

Document ID
3114450991800267327
Author
Yu L
Liao-liao Z
Yong-le L
Lei-lei L
Ying-jun P
Publication year
Publication venue
The 3rd International Conference on Information Sciences and Interaction Sciences

External Links

Snippet

Drilling processes in the oil industry utilize directional measurement-while-drilling (MWD) instruments to provide realtime monitoring of the position and the orientation of the bottom hole assembly (BHA). This article aims at describing a system and method incorporated with …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/34Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes
    • G01C19/38Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes with north-seeking action by other than magnetic means, e.g. gyrocompasses using earth's rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism

Similar Documents

Publication Publication Date Title
CN111655970B (en) Continuous trajectory computation for directional drilling
US6453239B1 (en) Method and apparatus for borehole surveying
CN111878056B (en) A gyro measurement while drilling system and method
US8200436B2 (en) Method and apparatus for wellbore survey using inertial sensors
EP1735592B1 (en) Measuring borehole survey tool orientation using microgyros
US6145378A (en) Aided inertial navigation system
US8374793B2 (en) Reducing error contributions to gyroscopic measurements from a wellbore survey system
US9963936B2 (en) Downhole closed loop drilling system with depth measurement
US8061047B2 (en) Active positioning of downhole devices using spherical motors
CN109891050B (en) Method for determining position using improved calibration of oppositely disposed sensors
CN101493008A (en) Strapping inertial navigation gyroscope clinometer based on MEMS device
US7197929B2 (en) Motion-responsive coupled masses
Ledroz et al. FOG-based navigation in downhole environment during horizontal drilling utilizing a complete inertial measurement unit: Directional measurement-while-drilling surveying
CN109681189A (en) A kind of hole diameter sector cementing quality and track integrated measuring instrument
US20210026037A1 (en) Wellbore Survey Tool Using Coriolis Vibratory Gyroscopic Sensors
Weston et al. New gyro while drilling technology delivers accurate azimuth and real-time quality control for all well trajectories
US20200132458A1 (en) Wellbore Survey Tool Using Coriolis Vibratory Gyroscopic Sensors
CN102182449B (en) Measuring device adopting solid-state vibration angular rate sensor group to realize north-seeking underground
Yu et al. A system with adaptive weight allocation algorithm for accuracy improving
CN117552767A (en) Directional instrument, and measuring method and system based on directional instrument
Liu et al. Key performance study of micro-quartz gyro for measurement-while-drilling
CN106321073A (en) Continuous inclination survey pup joint and high-speed telemetry logging instrument provided with pup joint
Liu et al. Design and evaluation of a vibration sensor for measurement-while-drilling
Chulkov PERSPECTIVES OF DEVELOPMENT OF MODERN DRILLING ASSEMBLY'POSITIONING SYSTEMS