Chen et al., 2014 - Google Patents
3-D micro surface profilometry employing novel Mirau-based lateral scanning interferometryChen et al., 2014
- Document ID
- 3003462318445172794
- Author
- Chen L
- Le M
- Lin Y
- Publication year
- Publication venue
- Measurement Science and Technology
External Links
Snippet
An innovative 3-D surface imaging methodology for reconstructing micro surface profiles with a long depth measuring range and a nano-scale resolution was developed using the newly developed Mirau-based lateral scanning interferometry (LSI). The current measuring …
- 238000005305 interferometry 0 title abstract description 26
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/24—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/24—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2536—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/24—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
- G01B11/2433—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures for measuring outlines by shadow casting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02055—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by error reduction techniques
- G01B9/02056—Passive error reduction, i.e. not varying during measurement, e.g. by constructional details of optics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02001—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/02—Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical means for measuring length, width or thickness for measuring thickness, e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02083—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by particular signal processing and presentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/0209—Non-tomographic low coherence interferometers, e.g. low coherence interferometry, scanning white light interferometry, optical frequency domain interferometry or reflectometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/30—Measuring arrangements characterised by the use of optical means for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/04—Measuring microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/40—Caliper-like sensors
- G01B2210/44—Caliper-like sensors with detectors on both sides of the object to be measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lehmann et al. | Fundamental aspects of resolution and precision in vertical scanning white-light interferometry | |
Zhang et al. | In situ surface topography of laser powder bed fusion using fringe projection | |
Giusca et al. | Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution | |
Leach et al. | Open questions in surface topography measurement: a roadmap | |
Nouira et al. | Characterization of the main error sources of chromatic confocal probes for dimensional measurement | |
Feng et al. | Optical measurement of surface topographies with transparent coatings | |
Seewig et al. | Unambiguous evaluation of a chirp measurement standard | |
Lyda et al. | Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy | |
Su | Coherence scanning interferometry | |
Niehues et al. | Low coherent Linnik interferometer optimized for use in nano-measuring machines | |
Leach et al. | Interpreting the probe-surface interaction of surface measuring instruments, or what is a surface? | |
Dong et al. | The calibration method of the circle-structured light measurement system for inner surfaces considering systematic errors | |
Peng et al. | Stitching interferometry for cylindrical optics with large angular aperture | |
Zhang et al. | Fiber optic white light interferometer for areal surface measurement | |
Chen et al. | 3-D micro surface profilometry employing novel Mirau-based lateral scanning interferometry | |
Lee et al. | High speed 3D surface profile without axial scanning: dual-detection confocal reflectance microscopy | |
Buajarern et al. | Characteristics of laser scanning confocal microscopes for surface texture measurements | |
Chesna et al. | Aerial wetting contact angle measurement using confocal microscopy | |
Lehmann et al. | Lateral resolution enhanced interference microscopy using virtual annular apertures | |
Ri | Accurate and fast out-of-plane displacement measurement of flat objects using single-camera based on the sampling moiré method | |
Kondo et al. | Evaluation of the deformation value of an optical flat under gravity | |
Ullmann et al. | White-light interferometers with polarizing optics for length measurements with an applicable zero-point detection | |
Hahn et al. | Single-shot low coherence pointwise measuring interferometer with potential for in-line inspection | |
Liao et al. | A novel method for quantitative height measurement based on an astigmatic optical profilometer | |
Kang et al. | Nonlinearity response correction in phase-shifting deflectometry |