Hovd Schmidt, 2016 - Google Patents
Evaluation of the impact of different heat treatments on the toughness and tempering resustance for a Cr-Mo-V hot-work tool steelHovd Schmidt, 2016
View PDF- Document ID
- 272684558003594456
- Author
- Hovd Schmidt N
- Publication year
External Links
Snippet
Abstract High Pressure Die Casting (HPDC) has very high demands on toughness and tempering resistance of the tool. A typical hardening cycle for this purpose consists on austenitizing and quenching in a vacuum furnace followed by three temperings at 600 C. In …
- 238000005496 tempering 0 title abstract description 141
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
- C21D9/36—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Conde et al. | Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel | |
Zhou et al. | Relationship between microstructure and mechanical properties of M50 ultra-high strength steel via quenching-partitioning-tempering process | |
Jain et al. | Thermally stable Ni-rich austenite formed utilizing multistep intercritical heat treatment in a low-carbon 10 Wt Pct Ni martensitic steel | |
Gu et al. | Comprehensive effect of nitrogen on Cr-Mo-V hot-working die steel with enhanced strength and toughness | |
Mehrabi et al. | Improvement of AISI 4340 steel properties by intermediate quenching–microstructure, mechanical properties, and fractography | |
Bono et al. | Investigation of strength recovery in welds of NUCu-140 steel through multipass welding and isothermal post-weld heat treatments | |
Soliman et al. | Alloy and process design of thermo-mechanically processed multiphase ductile iron | |
Parvinian et al. | Evaluation of the influence of B and Nb microalloying on the microstructure and strength of 18% Ni maraging steels (C350) using hardness, spherical indentation and tensile tests | |
Terentyev et al. | Development of RAFM steel for nuclear applications with reduced manganese, silicon and carbon content | |
Bertolo et al. | Grain refinement by rapid cyclic heating and its effect on cleavage fracture behaviour of an S690 high strength steel | |
Rehan et al. | Effect of Austenitization and Tempering on the Microstructure and Mechanical Properties of a 5 wt% Cr Cold Work Tool Steel | |
Wang et al. | Effect of tempering temperature on the microstructure and properties of Fe-2Cr-Mo-0.12 C pressure vessel steel | |
Hovd Schmidt | Evaluation of the impact of different heat treatments on the toughness and tempering resustance for a Cr-Mo-V hot-work tool steel | |
Joshi et al. | A review on effect of heat treatment process on micrograin structure of steel | |
Agnani et al. | Quantitative analysis of microstructural refinement in simulated carburized microstructures | |
Sun et al. | Microstructural evolution of high-nickel steel during quenching, lamellarizing, and tempering heat treatment | |
Sarkar et al. | A study on the tensile properties from the composition of an annealed structural steel sample | |
Osunbunmi et al. | Effect of heat treatment on the mechanical and microstructural properties of a low carbon steel | |
Zhao et al. | Effect of Secondary Welding Thermal Cycle Peak Temperature on Microstructure and Properties in Simulated Reheat Coarse Grain Heat Affected Zone of High Strength Medium-Mn Steel | |
Pushkareva et al. | A Study of the Carbon Distribution in Two Carbide-Free Bainite Alloys | |
Whitley | Thermomechanical Processing of Microalloyed Bar Steels for Induction Hardened Components | |
Jurči | Formation of microstructure during sub-zero treatments of chromium and chromium-vanadium ledeburitic steels | |
Talebi | Microstructure evolution and optimization of the tempering heat treatment of a medium-carbon low-alloy steel | |
Klemm-Toole | Effects of Alloying on Nitriding Behavior and Fatigue Performance of Medium Carbon Bar Steels | |
Myszka et al. | Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K |