Daneshi, 2019 - Google Patents
Sputtered Gallium Nitride Tunnel Junction ContactsDaneshi, 2019
View PDF- Document ID
- 2694576791866607560
- Author
- Daneshi K
- Publication year
External Links
Snippet
Gallium nitride LEDs produced for commercialization currently use indium tin oxide (ITO) as both a current spreading layer (CSL) and a contact to p-GaN. ITO is known to absorb wavelengths in the UV and visible light regions, the primary spectrum of GaN devices [20] …
- JMASRVWKEDWRBT-UHFFFAOYSA-N gallium nitride   [Ga]#N 0 title abstract description 34
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02516—Crystal orientation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L33/00—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of group III and group V of the periodic system
- H01L33/32—Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L33/00—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | High quality GaN buffer layer by isoelectronic doping and its application to 365 nm InGaN/AlGaN ultraviolet light-emitting diodes | |
Wang et al. | Molecular beam epitaxy growth of GaN, AlN and InN | |
US8035113B2 (en) | Optical devices featuring textured semiconductor layers | |
CN101438429B (en) | Group III nitride compound semiconductor stacked structure | |
KR101074178B1 (en) | Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp | |
US20090302314A1 (en) | P-type zinc oxide thin film and method for forming the same | |
JP3700283B2 (en) | Nitride compound semiconductor device | |
JP7296614B2 (en) | Nitride semiconductor manufacturing method, nitride semiconductor, and light emitting device | |
Daneshi | Sputtered Gallium Nitride Tunnel Junction Contacts | |
Meisch et al. | Doping behavior of GaN grown on patterned sapphire substrates | |
Kaeding et al. | Realization of high hole concentrations in Mg doped semipolar (101 1) GaN | |
Suihkonen | Fabrication of InGaN quantum wells for LED applications | |
Xu et al. | Homoepitaxy of GaN light-emitting diodes | |
JP2014507071A (en) | III-V semiconductor structure with reduced pit defects and method for forming the same | |
JP2004134812A (en) | Nitride compound semiconductor element | |
Abdelhamid | InGaN/GaN Light Emitting Diodes On Relaxed InGaN Templates | |
Li et al. | LED materials: epitaxy and quantum well structures | |
Lu | Electrical and optical properties of indium nitride and indium-rich nitrides prepared by molecular beam epitaxy for opto-electronics applications | |
Dikme | MOVPE and characterization of GaN-based structures on alternative substrates | |
Laleyan | Molecular Beam Epitaxy of Wide Bandgap Al (Ga) N and h-BN for Deep-Ultraviolet Optoelectronics | |
Shirazi-Hosseini-Dokht | Polar and Nonpolar III-Nitride Heterostructures for Near-Infrared Intersubband Materials and Devices | |
Mukund | InGaN/GaN Multiple Quantum Well Light-Emitting Diodes grown on Polar, Semi-polar and Non-Polar Orientations | |
Doppalapudi | Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys | |
Trybus | Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications | |
KR100329281B1 (en) | Method of treating the surface of dry etched nitride semi-conductor with nitrogen plasma |