[go: up one dir, main page]

Li et al., 2018 - Google Patents

A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid

Li et al., 2018

View PDF
Document ID
2650548836588107072
Author
Li L
Lu J
Zhai L
Zhang X
Curtiss L
Jin Y
Wu F
Chen R
Amine K
Publication year
Publication venue
CSEE Journal of Power and Energy Systems

External Links

Snippet

A simplistic and novel leaching process is developed to dispose spent lithium iron phosphate (LiFePO 4) batteries. In this paper, oxalic acid is selected as a leaching reagent to recover lithium as a resource and remove phosphorus from LiFePO 4 batteries, benefiting …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals

Similar Documents

Publication Publication Date Title
Li et al. A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid
Chen et al. Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3
Tang et al. Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach
Arshad et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries
Li et al. The recycling of spent lithium-ion batteries: a review of current processes and technologies
Tang et al. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach
Du et al. Progresses in sustainable recycling technology of spent lithium‐ion batteries
Makuza et al. Dry grinding-carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals
Yu et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes
Zhang et al. Recovery of LiFePO4 from used lithium-ion batteries by sodium-bisulphate-assisted roasting
Gao et al. Direct recovery of LiCoO2 from the recycled lithium-ion batteries via structure restoration
US10741890B2 (en) Method and apparatus for recycling lithium iron phosphate batteries
Zou et al. A novel method to recycle mixed cathode materials for lithium ion batteries
Zheng et al. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant
Fan et al. Room-temperature extraction of individual elements from charged spent LiFePO4 batteries
Mohanty et al. Application of various processes to recycle lithium-ion batteries (LIBs): A brief review
WO2018209164A1 (en) Method and apparatus for recycling lithium iron phosphate batteries
Gu et al. A green strategy for recycling cathode materials from spent lithium-ion batteries using glutathione
US12297518B2 (en) Lithium recovery process
Gu et al. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach
Duan et al. Recycling and direct-regeneration of cathode materials from spent ternary lithium-ion batteries by hydrometallurgy: Status quo and recent developments: Economic recovery methods for lithium nickel cobalt manganese oxide cathode materials
Chen et al. Hydrometallurgical processes for valuable metals recycling from spent lithium-ion batteries
Bhandari et al. Gaseous reduction of NMC-type cathode materials using hydrogen for metal recovery
Liu et al. Application of H4P2O7 as leaching acid in one-step selective recovery for metals from spent LiFePO4 batteries
Chen et al. Feasible route for the regeneration of cathode materials from spent lithium-ion batteries via reduction leaching and in-site precipitation