Seok et al., 2019 - Google Patents
Zno: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cellsSeok et al., 2019
View HTML- Document ID
- 17773074833909917187
- Author
- Seok H
- Ali A
- Seo J
- Lee H
- Jung N
- Yi Y
- Kim H
- Publication year
- Publication venue
- Science and Technology of Advanced Materials
External Links
Snippet
ABSTRACT Ga-doped ZnO (GZO)-graded layer, facilitating electron extraction from electron transport layer, was integrated on the surface of transparent indium tin oxide (ITO) cathode by using graded sputtering technique to improve the performance of planar nip perovskite …
- FIGVSQKKPIKBST-UHFFFAOYSA-N Phenyl-C61-butyric acid methyl ester C12=C3C4=C5C2=C2C6=C7C1=C1C8=C3C=3C9=C4C4=C%10C5=C5C2=C2C6=C6C%11=C7C1=C1C7=C8C=3C3=C8C9=C4C4=C9C%10=C5C5=C2C2=C6C6=C%11C1=C1C7=C3C=3C8=C4C4=7C9=C5C2=C2C6=C1C=3C2=7C4(CCCC(=O)OC)C1=CC=CC=C1 0 title description 41
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/543—Solar cells from Group II-VI materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0326—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/52—Details of devices
- H01L51/5203—Electrodes
- H01L51/5206—Anodes, i.e. with high work-function material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2251/00—Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seok et al. | Zno: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells | |
Uddin et al. | Progress and challenges of SnO2 electron transport layer for perovskite solar cells: A critical review | |
Chen et al. | Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation | |
Wang et al. | Rational interface design and morphology control for blade‐coating efficient flexible perovskite solar cells with a record fill factor of 81% | |
Xu et al. | Challenges and perspectives toward future wide‐bandgap mixed‐halide perovskite photovoltaics | |
Tian et al. | Composition engineering of all‐inorganic perovskite film for efficient and operationally stable solar cells | |
Zhao et al. | Using SnO2 QDs and CsMBr3 (M= Sn, Bi, Cu) QDs as charge‐transporting materials for 10.6%‐efficiency all‐inorganic CsPbBr3 perovskite solar cells with an ultrahigh open‐circuit voltage of 1.610 V | |
Dong et al. | Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects | |
Fu et al. | Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications | |
Palmstrom et al. | Enabling flexible all-perovskite tandem solar cells | |
You et al. | TiO2/WO3 bilayer as electron transport layer for efficient planar perovskite solar cell with efficiency exceeding 20% | |
Fu et al. | High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration | |
Yang et al. | High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 | |
Jiang et al. | Post‐treatment‐free solution‐processed non‐stoichiometric NiOx nanoparticles for efficient hole‐transport layers of organic optoelectronic devices | |
Ma et al. | MgO nanoparticle modified anode for highly efficient SnO2‐based planar perovskite solar cells | |
Chen et al. | Interfacial engineering and photon downshifting of CsPbBr3 nanocrystals for efficient, stable, and colorful vapor phase perovskite solar cells | |
Nkele et al. | The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device | |
Ren et al. | Chlorine‐modified SnO2 electron transport layer for high‐efficiency perovskite solar cells | |
Cattin et al. | Toward indium‐free optoelectronic devices: dielectric/metal/dielectric alternative transparent conductive electrode in organic photovoltaic cells | |
Huang et al. | Schottky/p‐n cascade heterojunction constructed by intentional n‐type doping perovskite toward efficient electron layer‐free perovskite solar cells | |
Moot et al. | Choose your own adventure: fabrication of monolithic all‐perovskite tandem photovoltaics | |
Duan et al. | Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evaporation | |
Najafi et al. | Highly efficient and stable semi‐transparent p‐i‐n planar perovskite solar cells by atmospheric pressure spatial atomic layer deposited ZnO | |
Yang et al. | Inorganic top electron transport layer for high performance inverted perovskite solar cells | |
Song et al. | Low‐Temperature Electron Beam Deposition of Zn‐SnOx for Stable and Flexible Perovskite Solar Cells |