[go: up one dir, main page]

Siler et al., 2019 - Google Patents

Three-dimensional geologic mapping to assess geothermal potential: examples from Nevada and Oregon

Siler et al., 2019

View HTML @Full View
Document ID
1738835686688939543
Author
Siler D
Faulds J
Hinz N
Dering G
Edwards J
Mayhew B
Publication year
Publication venue
Geothermal Energy

External Links

Snippet

Geologic structure plays an important role in controlling fluid flow in geothermal systems. In particular, very complex structural settings, consisting of many closely spaced and intersecting faults, host many geothermal systems. To elucidate the key geologic factors that …
Continue reading at link.springer.com (HTML) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V99/00Subject matter not provided for in other groups of this subclass
    • G01V99/005Geomodels or geomodelling, not related to particular measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V11/00GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/30Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/42Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/02Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for surface logging, e.g. from aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/008Earthquake measurement or prediction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/02Determining existence or flow of underground water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/007Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by detecting gases or particles representative of underground layers at or near the surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements

Similar Documents

Publication Publication Date Title
Siler et al. Three-dimensional geologic mapping to assess geothermal potential: examples from Nevada and Oregon
Zha et al. What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments
Nur et al. Critical porosity: A key to relating physical properties to porosity in rocks
Jolie et al. GEMex-A Mexican-European research cooperation on development of superhot and engineered geothermal systems
Blessent et al. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach
Comerford et al. Controls on geothermal heat recovery from a hot sedimentary aquifer in Guardbridge, Scotland: Field measurements, modelling and long term sustainability
Bouligand et al. Heat and mass transport in a vapor‐dominated hydrothermal area in Yellowstone National Park, USA: Inferences from magnetic, electrical, electromagnetic, subsurface temperature, and diffuse CO2 flux measurements
Guerrero-Martínez et al. A three-dimensional temperature model of the Acoculco caldera complex, Puebla, Mexico, from the Curie isotherm as a boundary condition
Mariita Application of geophysics to geothermal energy exploration and monitoring of its exploitation
Fairley Modeling fluid flow in a heterogeneous, fault‐controlled hydrothermal system
Vogt et al. On self-potential data for estimating permeability in enhanced geothermal systems
Armandine Les Landes et al. Locating geothermal resources: insights from 3D stress and flow models at the upper Rhine Graben scale
Brewer et al. Thermal and kinematic modeling of bedrock and detrital cooling ages in the central Himalaya
Alcaraz et al. A 3D multi-disciplinary interpretation of the basement of the Taupo Volcanic Zone, New Zealand
Küçük Simulation of geothermal reservoirs with high amount of carbon dioxide
Hormozzade Ghalati et al. Analysis of fluid flow pathways in the Mount Meager Volcanic Complex, southwestern Canada, Utilizing AMT and petrophysical data
Aydin et al. Characterization of Geothermal Reservoirs
Nielsen et al. Pilot phase of the Aguada Federal Block, black-oil window
Sewell et al. Preliminary investigation of seismic velocity variation at the Rotokawa and Ngatamariki geothermal fields
Wagner New developments in electrical resistivity imaging with applications to geological CO₂ storage
Boyd Hydrogeophysical characterisation for improved early warning of landslides
Jalali et al. High‐Resolution Characterization of Excavation‐Induced Fracture Network Using Continuous and Discrete Inversion Schemes
Gebru Prediction of Injection-Induced Cooling using Tracer Test Data in the Hellisheiði Geothermal Field, SW-Iceland Comparison of Numerical and Analytical Modelling Approaches
Swyer et al. Using boundary element modeling of fault slip to predict patterns of stress perturbation and related fractures in geothermal reservoirs and explore parameter uncertainty
Mariita Application of geophysical methods to geothermal energy exploration in Kenya